
Algorithmic Game Theory, Complexity and Learning July 20, 2017

Lecture 1.3: Learning from Expert Advice
Lecturer: Constantinos Daskalakis Scribe: Constantinos Daskalakis

Last time we examined two player zero-sum games, where two players are deciding on taking one
among several available actions. The payoff/loss of each player was a known function of the actions
of the two players, and in particular given by a payoff or loss matrix. We saw the notion of a Nash
equilibrium and its proof of existence for zero-sum games via von-Neumman’s minimax theorem.

In this lecture we will address two concerns of equilibrium theory: first how do players converge to an
equilibrium in a game, second what happens if they do not know the payoff function or for more general
games, the payoff of their opponent. We will address these two concerns by looking at the theory of
learning in sequential decision making scenarios against adversaries, in particular online learning theory.
In this lecture we will analyze a stylized example of an online learning theory scenario were a decision
maker is optimizing over two possible actions every day. In the next lecture we will look at a general
online learning setting and see how online learning applies to game theoretic scenarios and in particular
to zero-sum games.

1 Online Learning Example

Consider the following scenario: you just moved to Boston in the 90’s and you found a place to stay
in Cambridge, but your work is in downtown Boston. Every day you are trying to decide whether to
take the Longfellow or the Harvard bridge to cross to the other side during rush hour. Your ignorance
of Boston’s traffic and the absence of any high tech gadgets leave you with only one option: learning
by doing. You want to devise an algorithm that decides which bridge to take every day based on the
knowledge that you acquire after every day, such that you manage to avoid the traffic jams. Moreover,
given the uncertainty of Boston’s traffic situation you don’t want to make minimal assumptions on how
traffic jams are created in Boston. Your goal: at the end of the year, looking back at the traffic on the
bridges, you don’t want to regret not having picked one of the two bridges all the time.

We will formulate a stylized version of this problem that captures the essence of the learning task
that you are faced with. We consider a setting where a learner needs to decide among two actions {H,L}
on each of T days. At each day t he picks an action it ∈ {H,L} based on what he has observed so far.
After picking the action the player incurs a loss `itt ∈ [0, 1] and observes the loss that both actions would
have incurred had he chosen them, i.e. he observes the vector `t = (`Ht , `

L
t). The goal of the learner is

at the end of the T iterations, no matter what the sequences of loss vectors occurred, to have incurred
an average loss that is close to the loss of any fixed action in hindsight: i.e. for all `1, . . . , `T

1

T

T∑
t=1

`itt ≤ min
i∈{H,L}

1

T

T∑
t=1

`it + ε(T) (1)

for some error term ε(T) that goes to zero as T →∞.
More formally, we will define the regret of the algorithm as the difference of the cumulative loss of

the algorithm vs the cumulative loss of the best fixed action in hindsight, in the worst-case over loss
sequences:

Regret(T) = sup
`1,...,`T

(
T∑
t=1

`itt − min
i∈{H,L}

T∑
t=1

`it

)
(2)

and we will say that the algorithm is a no-regret algorithm if its regret grows sub-linearly with T , i.e.,
Regret(T) = o(T).

1.3: Learning from Expert Advice-1

Figure 1: An adversarial loss sequence for Follow-the-Leader

A first attempt. One first thought of how you would attempt to play in this setting is to always
play the action that historically performed best, i.e. at time-step t play action (breaking ties in favor of
action H):

it = argmin
i∈{H,L}

t−1∑
τ=1

`iτ (3)

This algorithm is typically referred to in the literature as the Follow-the-Leader (FTL) algorithm, as at
every iteration it plays the historical “leader” of the two actions.

However, it is easy to see that such an algorithm cannot perform well in the worst-case over loss
sequences. In particular, consider the loss sequence of the form depicted in Figure 1. In this sequence, one
each day a different action is the optimal. The algorithm keeps playing the optimal action in hindsight
but is always one step behind. Thus it always incurs a loss of 1 on each day, leading to a cumulative loss
of T . However, by picking a fixed action he incurs a loss of T/2. Thus the difference of the algorithm’s
average loss and the average loss of the best fixed action is a constant 1/2 that does not go to zero over
time.

There are two issues with the FTL algorithm:

1. Its choice of an action every day is deterministic given the past.

2. Its choice of action is very unstable from one day to the other.

In fact it is easy to see that any algorithm which given the history of losses, decides deterministically
what to play in the next iteration, cannot have sub-linear regret.

Lemma 1. Any deterministic learning algorithm has to have linear worst-case regret.

Proof: Consider any such algorithm and consider the loss sequence where on every day the loss of the
action picked by the algorithm is 1, while the loss of the alternative action is 0. Then in the end the
algorithm incurs a loss of T , while the best of the two actions has a loss of at most T/2. Hence, the
regret of the algorithm is at least T/2. �

This example shows that if we restrict our attention to deterministic algorithms, then the task we
set out to achieve is doomed to fail. Randomization still leaves a sliver of hope. Indeed, as we will see
in the next section, there exist good randomized algorithms that satisfy the no-regret condition.

An interesting observation, to be proven in the next section, is that even without randomization,
if we restrict to sequences of losses `1, . . . , `T , such that the best action in hindsight does not change
too often (i.e. the number of time-steps where the best action in hindsight changes from time-step t
to time-step t + 1 is at most o(T)), then the FTL algorithm will have o(T) regret. As we will see that
randomization allows us to achieve stability even without any assumption on the sequence of losses, by
fixing the stability issue of the FTL algorithm.

2 Randomized Algorithms and Expected Regret

Suppose now the learner picks every day action H with some probability pt and action L with probability
1− pt. Then the algorithm incurs an expected loss of:

f(pt; `t) = pt`
H
t + (1− pt)`Lt (4)

1.3: Learning from Expert Advice-2

We will now be interested in achieving an expected loss that is not much more than the loss of the
best action in hindsight. Crucially, we will take a worst case over sequences of losses that do not depend
on the actual realization of the action chosen by the algorithm, even though they can depend on the
probability distribution pt maintained by the algorithm.

More formally, we will measure the performance of the algorithm with respect to its expected regret:

Expected-Regret(T) = sup
`1,...,`t

(
T∑
t=1

f(pt; `t)− min
p∈[0,1]

T∑
t=1

f(p; `t)

)
(5)

3 Stability and Regret

We begin our quest of good no-regret algorithms, by an endeavor that is doomed to fail, but which will
shed light at what we need to fix. We will first show that the expected regret of the FTL algorithm is
bounded above by a stability quantity

∑T
t=1 1{it 6= it+1}. To make it closer to the randomized algorithms

that we will see towards the end of the section, we will first re-define FTL in the probability notation,
i.e.:

Follow-The-Leader (FTL): pt = argmin
p∈[0,1]

t−1∑
τ=1

f(p; `τ) (6)

Moreover, for notational convenience let:

Ft(p) =

t∑
τ=1

f(p; `τ) (7)

be the cumulative loss of always playing action H with probability p up until and including time-step t.
Thus the FTL algorithm plays pt = argminp∈[0,1] Ft−1(p). Observe, that because each function f(p; `τ)
is linear in p, hence Ft−1(p) is also linear in p, the latter minimization problem will have a solution
that is either 0 or 1, yielding back the deterministic FTL algorithm from the previous section. But for
now let’s stick with the seemingly “randomized” definition of FTL. Under this notation will show our
stability vs regret lemma.

Lemma 2 (Stability bounds regret). The expected regret of the FTL algorithm for any sequence `1, . . . , `T
is at most:

T∑
t=1

f(pt; `t)− min
p∈[0,1]

T∑
t=1

f(p; `t)︸ ︷︷ ︸
expected regret

≤
T∑
t=1

|pt − pt+1|︸ ︷︷ ︸
stability

(8)

Proof: We will show this property in a sequence of two lemmas. In the first one we simply observe
that the regret of the FTL algorithm is very close to the regret of an almost identical algorithm which
is tweaked in the following minimal way: suppose that on each day t we knew the loss vector that was
going to arise at that day and picked the probability p that minimizes the cumulative loss up to and
including time-step t, i.e.:

Be-The-Leader (BTL): p∗t = argmin
p∈[0,1]

t∑
τ=1

f(p; `τ) = argmin
p∈[0,1]

Ft(p) (9)

Observe that this is an infeasible algorithm as we do not know the loss vector ahead of time. However,
it is a useful hypothetical algorithm for analyzing the FTL algorithm.

Then as we shall show in the first lemma, the regret of the FTL algorithm is at most the regret of
the BTL algorithm plus the stability term. This should be easy to see, since p∗t = pt+1. Subsequently,
we will show the more crucial and subtle argument that the BTL algorithm has non-positive regret.
Combining these two observations will give the lemma.

1.3: Learning from Expert Advice-3

Lemma 2.1 (BTL vs FTL). The regret of the FTL algorithm is at most the regret of the BTL algorithm

plus
∑T
t=1 |pt − pt+1|.

Proof: We will show that the loss of the FTL algorithm is at most the loss of the BTL algorithm plus
the stability term. The latter will conclude the proof.

T∑
t=1

f(pt; `t) =

T∑
t=1

f(p∗t ; `t) +

T∑
t=1

(f(pt; `t)− f(p∗t ; `t))

=

T∑
t=1

f(p∗t ; `t) +

T∑
t=1

(pt − p∗t) ·
(
`Ht − `Lt

)
(by the definition of f(p; `t) in Equation (4))

≤
T∑
t=1

f(p∗t ; `t) +

T∑
t=1

|pt − p∗t | (since losses `it ∈ [0, 1])

≤
T∑
t=1

f(p∗t ; `t) +

T∑
t=1

|pt − pt+1| (by the definition of FTL and BTL, p∗t = pt+1)

�

Lemma 2.2 (BTL has no regret). The regret of the BTL algorithm is non-positive.

Proof: To show this we need to argue that the cumulative loss of BTL is at most the cumulative loss
of the best fixed action in hindsight. We first argue this in words and then more formally: Suppose that
up till time step t the cumulative loss of BTL was at most the loss of the best action in hindsight up until
and including time-step t. Thus it is at most the loss of any action in hindsight up until and including
time-step t. Then in the next iteration the algorithm will play the best action in hindsigh up-until and
including time-step t+ 1. Hence, the loss of the algorithm can increase by at most the loss incurred by
that action at time-step t+ 1. Together with the fact that until that point it had loss at most the loss
of that action, yields the lemma.

More formally: First observe that the best loss in hindsight up until and including time-step t is
exactly p∗t . Suppose by induction that:

t∑
τ=1

f(p∗τ ; `τ)︸ ︷︷ ︸
loss of BTL until time t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
cumulative loss of best fixed action until time t

= Ft(p
∗
t)︸ ︷︷ ︸

by definition of p∗t

(10)

Then we conclude the induction step that:

t+1∑
τ=1

f(p∗τ ; `τ) = f(p∗t+1; `t+1) +

t∑
τ=1

f(p∗τ ; `τ)

≤ f(p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) (by induction hypothesis)

≤ f(p∗t+1; `t+1) + Ft(p
∗
t+1) (since minimum is only better)

= Ft+1(p∗t+1) (by definition of Ft(p))

which concludes the induction step. Finally, the base case of t = 1 is satisfied by the definition of p∗1.
�

Combining these two lemmas, yields Lemma 2. �

4 Convexity and Stability

Lemma 2 shows that if we could somehow argue that the stability quantity is small, then we would be
done. However, we have no control over the stability of FTL in the worst-case over all possible loss
sequences as the example in the previous section showed.

1.3: Learning from Expert Advice-4

(a) Two linear functions that are close to each
other can have very far minima.

(b) For convex functions, closeness of the
functions implies closeness of their minima.

Figure 2

The weird thing that leads to instability of FTL is that even though the two functions Ft−1(p) and
Ft(p), are very close to each other (as they only differ by ft(p) ∈ [0, 1]) their minima (which are the
points pt and pt+1) can differ by a lot! The reason for this pathology, is that the functions Ft(·) are
linear functions, and as Figure 2a shows, we can create two linear functions that are very close to each
other, but such that their minima are very far apart.

Instead we would have liked to be able to reason that, since Ft(·) is not that different from Ft−1(·),
then their minima have to be close to each other. Such a property is not unheard off, and in fact it is
easy to see that such a property holds if the functions Ft(·) were not linear but rather strictly convex.
As you can see in Figure 2b if two functions f(·) and g(·) are very convex and at the same time they are
close to each other, then their minima have to be close!1 More formally:

Lemma 3 (Closeness of minima of convex functions). Consider two convex functions f : [0, 1]→ R and
g : [0, 1]→ R, such that f ′′(p) and g′′(p) ≥ 1

η for all p, and such that h(p) = g(p)−f(p) is an L-Lipschitz

function, i.e. |h(p)− h(p′)| ≤ L · |p− p′|. Then if pf = argminp∈[0,1] f(p) and pg = argminp∈[0,1] g(p), it
must hold that: |pf − pg| ≤ η · L.

Proof: The proof is given pictorially in Figure 3. Below we present the complete proof.
Consider a second order Taylor expansion of f around its minimum. Then by the mean value theorem,

for all p ∈ [0, 1] and for some p̄ ∈ [0, 1]:

f(p)− f(pf) = f ′(pf) · (p− pf) +
f ′′(p̄)

2
· (p− pf)2

≥ f ′′(p̄)

2
· (p− pf)2 (since pf is minimizer, f ′(pf) · (p− pf) ≥ 0)

≥ 1

2η
· (p− pf)2 (since f ′′(p) ≥ 1

η)

Similarly, we can show that B = g(p)− g(pg) ≥ 1
2η · (p− pg)

2.

1In fact you don’t really need that the functions are close to each other, rather just that their difference f(p) − g(p)
does not vary a lot with p.

1.3: Learning from Expert Advice-5

Figure 3: The proof of Lemma 3 follows immediately by noting that C−D = A+B in the above figure,
together with the fact that C −D ≤ L|pf − pg| by Lipschitzness of the difference of the two functions
and A+B ≥ 1

η (pf − pg)2 by the strict convexity of the two functions.

Finally, we can conclude by invoking Lipschitzness of the difference function:

L · |pf − pg| ≥ h(pf)− h(pg) (by lipschitzness of h)

= g(pf)− f(pf)︸ ︷︷ ︸
C

−(g(pg)− f(pg)︸ ︷︷ ︸
D

) (by definition of h)

= g(pf)− g(pg)︸ ︷︷ ︸
A

+ f(pg)− f(pf)︸ ︷︷ ︸
B

(by re-arranging)

≥ 1

2η
(pf − pg)2 +

1

2η
(pg − pf)2 (by strict convexity of f(·) and g(·))

=
1

η
(pf − pg)2

Dividing the above inequality by |pf − pg| yields the lemma. �

5 Follow the Regularized Leader: Convexity through Regular-
ization

So if the cumulative loss functions Ft(·) happened to be strictly convex, i.e. had second derivatives

bounded from below by 1
η , then we would be able to upper bound the stability quantity

∑T
t=1 |pt−pt+1|

by η ·T , since the difference between any two cumulative functions Ft(p)−Ft−1(p) = ft(p) is 1-Lipschitz
(from the fact that losses are bounded in [0, 1]). If η was a very small number, i.e. inversely proportional
to some power of T , then we would get sub-linear regret.

But our cumulative functions are not strictly convex! The solution to this problem is the obvious
one: let’s make our cumulative functions strictly convex by adding an arbitrary strictly convex function
R(p) to them. . .

In particular, consider a strictly convex function R(p), satisfying R′′(p) ≥ 1 for all p ∈ [0, 1]. There
are many functions like that, such as R(p) = 1

2p
2 or R(p) = p log(p) + (1 − p) log(1 − p) or R(p) =

log(p) + log(1 − p) etc. Then we can alter our cumulative functions to make them strictly convex by
modifying them as: F̃t(p) = Ft(p) + 1

ηR(p). Then F̃ ′′t (p) ≥ 1
η , which means that if every day we played

according to the minimum of this modified function, then the probabilities pt and pt+1 will be at most
η far apart from each other.

1.3: Learning from Expert Advice-6

We will call this strictly convex function R(p) a regularizer, as it “regularizes” our hindsight mini-
mization problem to not “overfit” to the history and hence be unstable from one iteration to the other.
We will subsequently call the the algorithm that every day plays according to the p that minimizes the
hindsight regularized cumulative loss, the Follow-the-Regularized-Leader :

Follow-the-Regularized-Leader (FTRL): p̃t = argmin
p∈[0,1]

Ft−1(p) +
1

η
R(p) = argmin

p∈[0,1]

F̃t−1(p) (11)

Adding the regularization solved the instability problem of the FTL algorithm. However, it intro-
duced some error in our hindsight minimization. In particular, the loss of our algorithm is now not as
close to the loss of the BTL algorithm, since p̃t+1 6= p∗t . However, they are not that far apart. In fact
they are at most 2 maxp∈[0,1] |R(p)|/η far apart. The reason is that FTRL is closed to a regularized
version of BTL, which in turn has regret at most the above quantity. The reason why the regularized
version of BTL has small regret, is that we can view the regularizer as an extra fake loss, that happened
at time-step 0. The regularized version of BTL is essentially, BTL on this augmented loss sequence.
Hence, we can invoke our Lemma 2.2 on this augmented sequence, to claim that the regularized version
of BTL has no regret on this augmented sequence. Combining all these arguments leads to the following
bound on the regret of FTRL:

Theorem 1. The expected regret of FTRL with a regularizer R(p), satisfying R′′(p) ≥ 1 and a parameter
η, is upper bounded:

Expected-Regret(T) ≤
2 maxp∈[0,1] |R(p)|

η
+ η · T (12)

Proof: We will show this again in two lemmas, which are the “regularized” analogues of Lemma 2.1
and Lemma 2.2. Similar to that proof, let’s consider a slight modification of the FTRL algorithm which
includes the next iteration’s loss vector in the optimization:

Be-the-Regularized-Leader (BTRL): p̃∗t = argmin
p∈[0,1]

F̃t(p) (13)

Lemma 1.1 (BTRL vs FTRL). The regret of FTRL is at most the regret of BTRL plus
∑T
t=1 |p̃t− p̃t+1|.

The latter is upper bounded by η · T .

Proof: The first part of the theorem follows along the same lines as the proof of Lemma 2.1, by
observing that p̃t+1 = p̃∗t .

The second part follows by observing that p̃t and p̃t+1 are minimizers of F̃t−1(·) and F̃t(·) respectively.
The latter are strictly convex functions with second derivatives at least 1

η . Moreover, F̃t+1(p)− F̃t(p) =

ft(p) = p · `Ht + (1− p) · (1− `Lt), which is a 1-Lipschitz function when `it ∈ [0, 1]. Thus invoking Lemma
3, we get that |p̃t − p̃t+1| ≤ η. �

Lemma 1.2 (BTRL has small regret). The regret of BTRL is upper bounded by
2 maxp∈[0,1] |R(p)|

η .

Proof: Observe that in the proof of Lemma 2.2 we did not really use any property of the form of
our functions ft(·). Hence, even if our loss functions at each iteration are arbitrary convex functions,
that lemma holds. Thus we can think our regularization term as an extra fake loss at time-step 0, i.e.:
f0(p) = 1

ηR(p). Observe that BTRL is equivalent to BTL on this augmented sequence of losses. By
invoking Lemma 2.2 we have that BTRL has no regret on this augmented sequence, i.e.:

T∑
t=0

ft(p̃
∗
t) ≤ min

p∈[0,1]

T∑
t=0

ft(p) ≤ max
p∈[0,1]

f0(p) + min
p∈[0,1]

T∑
t=1

ft(p)

where p̃∗0 = argminp
1
ηR(p). By re-arranging we get:

T∑
t=1

ft(p̃
∗
t)− min

p∈[0,1]

T∑
t=1

ft(p) ≤ max
p∈[0,1]

1

η
R(p)−min

p

1

η
R(p) ≤ max

p∈[0,1]

2

η
|R(p)|

1.3: Learning from Expert Advice-7

�
Combining the two lemmas yields the theorem. �

An easy corollary of the latter theorem is that if we pick η =

√
2 maxp∈[0,1] |R(p)|

T , then we get regret
that grows sub-linearly! Hence, we get a no-regret algorithm.

Corollary 1. The expected regret of FTRL with η =

√
maxp∈[0,1] |R(p)|

T is at most:

Expected-Regret(T) ≤ 2
√

2 max
p∈[0,1]

|R(p)| · T (14)

Let’s now look at one of the many regularizers that satisfy our conditions. Since we are looking
at optimizing over probability distributions, a natural regularizer to consider is the negative entropy
function:

R(p) = p · log(p) + (1− p) · log(1− p) (15)

The negative entropy function also has a nice intuition as to why it should lead to good stability: in
essence the FTRL algorithm with the negative entropy regularizer, is trying to play the best action in
hindsight, but also is trying to play with a distribution over actions that has high entropy (i.e. it is not
very deterministic). This takes care of the problem of the FTL algorithm that was very deterministic
and could be made to incur high regret for some loss sequences. Moreover, since the negative entropy
function is a strictly convex, it leads to an algorithm that makes only small modifications towards the
action that performs best in hindsight, rather than always jumping around to the best action. For
example: if the two actions have almost identical performance, then they will be played with almost
equal probability.

In fact for this type of a regularizer we can find in closed form the optimal solution to the problem
that FTRL is solving:

p̃t = argmin
p∈[0,1]

Ft−1(p) +
1

η
(p log(p) + (1− p) log(1− p))

= argmin
p∈[0,1]

t−1∑
τ=1

(
p · (`Hτ − `Lτ) + `Lτ

)
+

1

η
(p log(p) + (1− p) log(1− p))

= argmin
p∈[0,1]

p ·
t−1∑
τ=1

(`Hτ − `Lτ) +
1

η
(p log(p) + (1− p) log(1− p))

By taking the first order conditions to the above minimization problem we get the solution:

p̃t =
exp{−η ·

∑t−1
τ=1(`Hτ − `Lτ)}

1 + exp{−η ·
∑t−1
τ=1(`Hτ − `Lτ)}

=
exp{−η ·

∑t−1
τ=1 `

H
τ }

exp{−η
∑t−1
τ=1 `

L
τ }+ exp{−η ·

∑t−1
τ=1 `

H
τ }

A nice way of looking at the latter algorithm, is that at each iteration we keep a weight wit for each
action i ∈ {H,L}, starting from wi0 = 1

2 . Then at each iteration we update the weight of each algorithm
as:

wit+1 = wit · exp{−η · `it} (16)

and at each iteration we play each action with probability proportional to its weight! Hence, this
algorithm gradually penalizes actions that incur higher losses, by dropping their weight faster.

This algorithm is a very well-known algorithm, known under various names, such as exponential
weight updates, EXP, multiplicative weight updates, Hedge, . . . , and has found many applications in
many areas of computer science even ones not directly related to online learning.

1.3: Learning from Expert Advice-8

6 Historical Remarks

The online learning framework dates back to the very early work of Hannan [Han57] on consistency and of
Blackwell [B+56] on approachability, which are both terms that are very closely related to achieving the
no-regret condition. The exponential weights algorithm dates back to the early and very influential work
of Littlestone and Warmuth [LW94] and Freund and Schapire [FS97] and Kivinen and Warmuth [KW97].
The analysis of Hedge, through the Follow-the-Regularized-Leader lens is due to Shalev-Shwartz and
Singer [SSS07a, SSS07b]. A very comprehensive survey of Follow-the-Regularized-Leader and related
algorithms can be found in [SS12].

7 Acknowledgments

Based on lecture notes by Vasilis Syrgkanis for the Spring 2017 course “Algorithmic Game Theory and
Data Science” by Daskalakis and Syrgkanis.

References

[B+56] David Blackwell et al. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6(1):1–8, 1956.

[FS97] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, August 1997.

[Han57] James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory of
Games, 3:97–139, 1957.

[KW97] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for
linear predictors. Inf. Comput., 132(1):1–63, January 1997.

[LW94] N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and Com-
putation, 108(2):212 – 261, 1994.

[SS12] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2012.

[SSS07a] Shai Shalev-Shwartz and Yoram Singer. Online learning: Theory, algorithms, and applications.
2007.

[SSS07b] Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algo-
rithms. Mach. Learn., 69(2-3):115–142, December 2007.

1.3: Learning from Expert Advice-9

