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Stochastic Gradient Descent

Definition
Let f:RY — R be convex function in some convex set X'. The SGD is given as

Tl4+1 = Tk — ARV,

where E[vg|zi] = V f(zk)
>« is called the step-size.
P> ;. must be vanishing s.t. SGD converges.

» v, and x; are random vectors.



Stochastic Gradient Descent

Theorem

Let f : R - R be p-strongly convex. Assume that E[||lvg|| 2] < p?. Let x* be a

minimizer. It holds for ay = i,
2

E|f (;Zmﬂ —J@") < 5 (1 + log ),

> «y scales as % and is vanishing.

> For T =0 (% log %) we get error e.



Stochastic Gradient Descent

More on step-size

. . Thal = Tp — Qp - 2T
GD on f(z,y) = 2% — y? —) Lhtl = Tk = O * 2T

Yet+1 = Yk + Qp - 2y
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Saddle point (0,0)



Stochastic Gradient Descent

Example: Coordinate descent

Let f be convex differentiable in some convex set X'. Coordinate Descent is defined:

Tip1 =T — O 7€

8:@-
for iteratively chosen i € [d].

> Similar guarantees with GD as long as each coordinate is taken often.

» If coordinate ¢ is chosen uniformly at random, then E [8872} = v f(x).

T n
» Open question: Does deterministic (block) coordinate descent almost always
avoid saddle points with vanishing step-size?



Stochastic Gradient Descent

Risk Minimization
Let ¢(z,2) : X x Z — R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

inlL
min L (z)

where L(z) =E,.p[l(x, z)].
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Risk Minimization
Let ¢(z,2) : X x Z — R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

inlL
min L (z)

where L(z) =E,.p[l(x, z)].

Question:

Connection to optimization for neural networks?



Stochastic Gradient Descent

Risk Minimization
Let ¢(z,2) : X x Z — R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

inlL
min L(z)

where L(z) =E,.p[l(x, z)].

Approach one:

> Take enough samples z; independently and consider the estimate
L(z) =13 4(x, %). (Law of Large Numbers)

» Run first order optimization algorithm on L(zx) to minimize it.



Stochastic Gradient Descent

Risk Minimization
Let {(z,z) : X x Z — R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

in L
R

where L(z) = E, p[l(z, z)].
Approach two: SGD

» For each iteration ¢ + 1, take a fresh sample z; independently from z1, ..., z:_1
and consider the unbiased estimate V,0(xy, z¢).

» Update xy11 = x¢ — oV l(xy, 21).

> Return for £ > ;.



Stochastic Gradient Descent

Question:

Why SGD works well even in non-convex settings? (Converges to global minima,
not stuck at saddle point etc)



Langevin Equation and Sampling

Question: How to generate random samples from R? such that these points
satisfies certain probability distribution?
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Langevin Equation and Sampling

Question: How to generate random samples from R? such that these points
satisfies certain probability distribution?

Langevin equation

dX, = —Vf(X;)dt + V2dB,

As a random variable, X; has its density function, denoted by p;, and this density
function evolves as X; evolves according the stochastic differential equaiton.



Log-concave distributions

» Function p(z) is called log-concave if
logp(tz + (1 —t)y) > tlogp(z) + (1 —t)logp(y) for all 0 <t < 1, or simply,
log p(x) is concave.

» Distribution whose density function is log-concave is called log-concave
distribution.

» Example: Gaussian distribution, density function p(z) = eIl




Sampling by Langevin Dynamics

» To sample from a distribution v « e~ on R?, we often use the Langevin
algorithm:
Tpyp1 = 2 — aVf(z) + V2az

where zg is the Gaussian noise.

» This algorithm is expected to converge to a biased distribution that is close to
v.

» For case of log-concave distribution, there are exitensively amout research, the
convergence is rapid.



Sampling vs. Optimization

Informally:
» Optimization is sampling from a Dirac distribution.

» Sampling is optimization in the space of distributions.



Sampling vs. Optimization

Informally:
» Optimization is sampling from a Dirac distribution.
» Sampling is optimization in the space of distributions.

Recall the Langevin equation
dX, = —Vf(X;)dt + V2dB,

The density function of X; satisfies

op(z,t)
ot

Reading: Fokker-Planck equation.

=V (p($,t)v_f(l’)) + Ap(x,t).



Readings

> Sampling can be faster than optimization. Yi-an Ma, Yuansi Chen, Chi Jin,
Nicolas Flammarion, and Michael I. Jordan. 2019.

» Dynamical, symplectic and stochastic perspectives on gradient-based
optimization. Michael I. Jordan. 2018.
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