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Stochastic Gradient Descent

Definition
Let f : Rd → R be convex function in some convex set X . The SGD is given as

xk+1 = xk − αkvk,

where E[vk|xk] = ∇f(xk)

I αk is called the step-size.

I αk must be vanishing s.t. SGD converges.

I vk and xk are random vectors.
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Stochastic Gradient Descent

Theorem
Let f : Rd → R be µ-strongly convex. Assume that E[‖vk‖ 2] ≤ ρ2. Let x∗ be a
minimizer. It holds for αk = 1

µk ,

E

[
f

(
1

T

∑
t

xt

)]
− f(x∗) ≤ ρ2

2µT
(1 + log T ).

I αk scales as 1
k and is vanishing.

I For T = Θ
(
1
ε log 1

ε

)
we get error ε.
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Stochastic Gradient Descent

More on step-size
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Stochastic Gradient Descent

Example: Coordinate descent

Let f be convex differentiable in some convex set X . Coordinate Descent is defined:

xt+1 = xt − αt
∂f

∂xi
ei

for iteratively chosen i ∈ [d].

I Similar guarantees with GD as long as each coordinate is taken often.

I If coordinate i is chosen uniformly at random, then E
[
∂f
∂xi

]
= 1

n∇f(x).

I Open question: Does deterministic (block) coordinate descent almost always
avoid saddle points with vanishing step-size?
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Stochastic Gradient Descent

Risk Minimization
Let `(x, z) : X ×Z → R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

min
x∈X

L(x)

where L(x) = Ez∼D[`(x, z)].

Question:

Connection to optimization for neural networks?
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Stochastic Gradient Descent

Risk Minimization
Let `(x, z) : X ×Z → R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

min
x∈X

L(x)

where L(x) = Ez∼D[`(x, z)].

Approach one:

I Take enough samples zi independently and consider the estimate
L̄(x) = 1

n

∑
i `(x, zi). (Law of Large Numbers)

I Run first order optimization algorithm on L̄(x) to minimize it.
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Stochastic Gradient Descent

Risk Minimization
Let `(x, z) : X ×Z → R be a risk function and D osme unkown distribution we can
get samples from. We are interested in solving:

min
x∈X

L(x)

where L(x) = Ez∼D[`(x, z)].

Approach two: SGD

I For each iteration t+ 1, take a fresh sample zt independently from z1, ..., zt−1
and consider the unbiased estimate ∇x`(xt, zt).

I Update xt+1 = xt − αt∇x`(xt, zt).
I Return for 1

T

∑
xt.
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Stochastic Gradient Descent

Question:

Why SGD works well even in non-convex settings? (Converges to global minima,
not stuck at saddle point etc)
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Langevin Equation and Sampling

Question: How to generate random samples from Rd such that these points
satisfies certain probability distribution?

Langevin equation

dXt = −∇f(Xt)dt+
√

2dBt

As a random variable, Xt has its density function, denoted by ρt, and this density
function evolves as Xt evolves according the stochastic differential equaiton.
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Log-concave distributions

I Function p(x) is called log-concave if
logp(tx+ (1− t)y) ≥ t log p(x) + (1− t) log p(y) for all 0 ≤ t ≤ 1, or simply,
log p(x) is concave.

I Distribution whose density function is log-concave is called log-concave
distribution.

I Example: Gaussian distribution, density function p(x) = e−‖x‖
2
.
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Sampling by Langevin Dynamics

I To sample from a distribution ν ∝ e−f(x) on Rd, we often use the Langevin
algorithm:

xt+1 = xt − α∇f(xt) +
√

2αz0

where z0 is the Gaussian noise.

I This algorithm is expected to converge to a biased distribution that is close to
ν.

I For case of log-concave distribution, there are exitensively amout research, the
convergence is rapid.
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Sampling vs. Optimization

Informally:

I Optimization is sampling from a Dirac distribution.

I Sampling is optimization in the space of distributions.

Recall the Langevin equation

dXt = −∇f(Xt)dt+
√

2dBt

The density function of Xt satisfies

∂p(x, t)

∂t
= ∇ · (p(x, t)∇f(x)) + ∆p(x, t).

Reading: Fokker-Planck equation.
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Readings

I Sampling can be faster than optimization. Yi-an Ma, Yuansi Chen, Chi Jin,
Nicolas Flammarion, and Michael I. Jordan. 2019.

I Dynamical, symplectic and stochastic perspectives on gradient-based
optimization. Michael I. Jordan. 2018.
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Thank You!


