Optimization for Machine Learning

Xiao Wang

Shanghai University of Finance and Economics

May 7, 2021

Definition

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex function in some convex set \mathcal{X} . The SGD is given as

$$x_{k+1} = x_k - \alpha_k v_k,$$

xw

・ロト ・ 御 ト ・ 臣 ト ・ 臣 ト 三 臣 -

where $\mathbb{E}[v_k|x_k] = \nabla f(x_k)$

- $\triangleright \alpha_k$ is called the step-size.
- $\triangleright \alpha_k$ must be vanishing s.t. SGD converges.
- \triangleright v_k and x_k are random vectors.

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be μ -strongly convex. Assume that $\mathbb{E}[||v_k||^2] \leq \rho^2$. Let x^* be a minimizer. It holds for $\alpha_k = \frac{1}{\mu k}$,

$$\mathbb{E}\left[f\left(\frac{1}{T}\sum_{t}x_{t}\right)\right] - f(x^{*}) \leq \frac{\rho^{2}}{2\mu T}(1 + \log T).$$

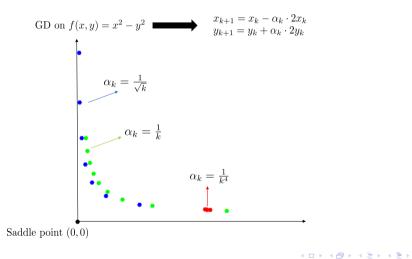
XW

- -

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

α_k scales as ¹/_k and is vanishing.
For T = Θ(¹/_ε log ¹/_ε) we get error ε.

More on step-size



- 3

Example: Coordinate descent

Let f be convex differentiable in some convex set \mathcal{X} . Coordinate Descent is defined:

$$x_{t+1} = x_t - \alpha_t \frac{\partial f}{\partial x_i} e_i$$

for iteratively chosen $i \in [d]$.

- ▶ Similar guarantees with GD as long as each coordinate is taken often.
- If coordinate *i* is chosen uniformly at random, then $\mathbb{E}\left[\frac{\partial f}{\partial x_i}\right] = \frac{1}{n}\nabla f(x)$.
- Open question: Does deterministic (block) coordinate descent almost always avoid saddle points with vanishing step-size?

_____ □ ● (山 ● (山 ● (山 ● (山 ●)

Risk Minimization

Let $\ell(x, z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and D osme unkown distribution we can get samples from. We are interested in solving:

$\min_{x \in \mathcal{X}} L(x)$

XW

where $L(x) = \mathbb{E}_{z \sim D}[\ell(x, z)].$

Risk Minimization

Let $\ell(x, z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and D osme unkown distribution we can get samples from. We are interested in solving:

$\min_{x \in \mathcal{X}} L(x)$

where
$$L(x) = \mathbb{E}_{z \sim D}[\ell(x, z)].$$

Question:

Connection to optimization for neural networks?

Risk Minimization

Let $\ell(x, z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and D osme unkown distribution we can get samples from. We are interested in solving:

 $\min_{x\in\mathcal{X}}L(x)$

where
$$L(x) = \mathbb{E}_{z \sim D}[\ell(x, z)].$$

Approach one:

- ► Take enough samples z_i independently and consider the estimate $\bar{L}(x) = \frac{1}{n} \sum_i \ell(x, z_i)$. (Law of Large Numbers)
- Run first order optimization algorithm on $\overline{L}(x)$ to minimize it.

Risk Minimization

Let $\ell(x, z) : \mathcal{X} \times \mathcal{Z} \to \mathbb{R}$ be a risk function and D osme unkown distribution we can get samples from. We are interested in solving:

 $\min_{x \in \mathcal{X}} L(x)$

where
$$L(x) = \mathbb{E}_{z \sim D}[\ell(x, z)].$$

Approach two: SGD

For each iteration t + 1, take a fresh sample z_t independently from $z_1, ..., z_{t-1}$ and consider the unbiased estimate $\nabla_x \ell(x_t, z_t)$.

• Update
$$x_{t+1} = x_t - \alpha_t \nabla_x \ell(x_t, z_t)$$
.

$$\blacktriangleright \text{ Return for } \frac{1}{T} \sum x_t$$

Question:

Why SGD works well even in non-convex settings? (Converges to global minima, not stuck at saddle point etc)

Langevin Equation and Sampling

Question: How to generate random samples from \mathbb{R}^d such that these points satisfies certain probability distribution?

Langevin Equation and Sampling

Question: How to generate random samples from \mathbb{R}^d such that these points satisfies certain probability distribution?

Langevin equation

$$dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$$

Langevin Equation and Sampling

Question: How to generate random samples from \mathbb{R}^d such that these points satisfies certain probability distribution?

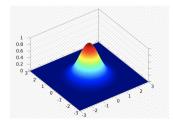
Langevin equation

$$dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$$

As a random variable, X_t has its density function, denoted by ρ_t , and this density function evolves as X_t evolves according the stochastic differential equation.

Log-concave distributions

- Function p(x) is called log-concave if $logp(tx + (1-t)y) \ge t \log p(x) + (1-t) \log p(y)$ for all $0 \le t \le 1$, or simply, $\log p(x)$ is concave.
- Distribution whose density function is log-concave is called log-concave distribution.
- Example: Gaussian distribution, density function $p(x) = e^{-\|x\|^2}$.



Sampling by Langevin Dynamics

▶ To sample from a distribution $\nu \propto e^{-f(x)}$ on \mathbb{R}^d , we often use the Langevin algorithm:

$$x_{t+1} = x_t - \alpha \nabla f(x_t) + \sqrt{2\alpha} z_0$$

where z_0 is the Gaussian noise.

- ▶ This algorithm is expected to converge to a biased distribution that is close to ν .
- ▶ For case of log-concave distribution, there are exitensively amout research, the convergence is rapid.

Sampling vs. Optimization

Informally:

- ▶ Optimization is sampling from a Dirac distribution.
- ▶ Sampling is optimization in the space of distributions.

Sampling vs. Optimization

Informally:

▶ Optimization is sampling from a Dirac distribution.

Sampling is optimization in the space of distributions.
 Recall the Langevin equation

$$dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$$

The density function of X_t satisfies

$$\frac{\partial p(x,t)}{\partial t} = \nabla \cdot \left(p(x,t) \nabla f(x) \right) + \Delta p(x,t).$$

Reading: Fokker-Planck equation.

Readings

- Sampling can be faster than optimization. Yi-an Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I. Jordan. 2019.
- Dynamical, symplectic and stochastic perspectives on gradient-based optimization. Michael I. Jordan. 2018.

Thank You!

