### **Optimization for Machine Learning**

Xiao Wang

Shanghai University of Finance and Economics

April 15, 2021



### Contents

▶ Optimization for Neural Network

XW

・ロト ・四ト ・ヨト ・ヨト 三日

- Convex Optimization
- Non-convex Optimization
- ► Examples
- Constrained Optimization
- ▶ Further Topics

#### Supervised Learning Problem:

Let  $\mathcal{K}$  be a set (e.g. images, texts), with  $F : \mathcal{K} \to \mathbb{R}^m$  a function. Suppose that the values of F are known only on a proper finite set  $\mathcal{S} \subset \mathcal{K}$ . Can we predict the values of F(x) for  $x \in \mathcal{K} \setminus \mathcal{S}$ ?

#### **Supervised Learning Problem:**

Let  $\mathcal{K}$  be a set (e.g. images, texts), with  $F : \mathcal{K} \to \mathbb{R}^m$  a function. Suppose that the values of F are known only on a proper finite set  $\mathcal{S} \subset \mathcal{K}$ . Can we predict the values of F(x) for  $x \in \mathcal{K} \setminus \mathcal{S}$ ?



-

**Definition** The function  $\phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_q}$ 

$$\phi: \mathbb{R}^{n_0} \xrightarrow{T_1} \mathbb{R}^{n_1} \xrightarrow{h_1} \mathbb{R}^{n_1} \xrightarrow{T_2} \cdots \xrightarrow{T_q} \mathbb{R}^{n_q} \xrightarrow{h_q} \mathbb{R}^{n_q}$$

is called a Feed-forward Neural Network.



# Definition

The function  $\phi : \mathbb{R}^{n_0} \to \mathbb{R}^{n_q}$ 

$$\phi: \mathbb{R}^{n_0} \xrightarrow{T_1} \mathbb{R}^{n_1} \xrightarrow{h_1} \mathbb{R}^{n_1} \xrightarrow{T_2} \cdots \xrightarrow{T_q} \mathbb{R}^{n_q} \xrightarrow{h_q} \mathbb{R}^{n_q}$$

is called a Feed-forward Neural Network.

 $\blacktriangleright$   $T_j$  are affine maps of the form

$$T_j(x) = A_j x + b_j,$$

The weight matrix  $A_j$  and bias vector  $b_j$  represent the map from one layer to another;



 $\blacktriangleright$   $h_i$  are the activation functions that are typically chosen from

$$\left\{\max\{0,x\}, \left(1+e^{-x}\right)^{-1}\right\}$$



 $\mathbf{X}\mathbf{W}$ 

### Training

For a neural network  $\phi$  with fixed architecture,  $\phi$  is determined by the parameters  $\mathbf{A} = (A_1, ..., A_q), \mathbf{b} = (b_1, ..., b_q)$ , provided a given set of activation functions;



### Training

- For a neural network  $\phi$  with fixed architecture,  $\phi$  is determined by the parameters  $\mathbf{A} = (A_1, ..., A_q), \mathbf{b} = (b_1, ..., b_q)$ , provided a given set of activation functions;
- ▶ To train the network, we choose, for example, the mean-square loss function:

$$L(\mathbf{A}, \mathbf{b}) = \sum_{x \in S} \|F(x) - \phi(x, \mathbf{A}, \mathbf{b})\|^2$$

and minimize such L using gradient descent.



### Example: ReLU network with one hidden layer

- Activation function:  $h(x) = \max\{0, x\};$
- ▶ Input dimension: 3;
- ▶ Width of hidden layer: 4;
- Weight matrix  $W = \{w_i\}_{i=1}^4$ : 4 is the number of neurons;
- ▶ Bias vector:  $b = (b_1, ..., b_4)$

 $z_i = w_i^\top \mathbf{x} + b_i \to h(z_i) \to \hat{y} = (h(z_1), ..., h(z_4)) \text{ or } \sum_{i=1}^4 a_i h(z_i) \to \text{Output.}$ 



xw

- 34

A D K A D K A D K A D K

#### Cont. with example

Suppose that the NNW is of the form  $\phi(\mathbf{x}) = \sum_{i=1}^{4} a_i h(w_i^{\top} \mathbf{x} + b_i)$ , and we are given *n* samples from observation:  $\{(\mathbf{x}_k, y_k)\}_{k=1}^n$ , where  $y_i$ 's are called "labels". By "Learning/Training", we mean to minimize the loss function

$$L(W, b, a) = \frac{1}{n} \sum_{k=1}^{n} (\phi(\mathbf{x}_k) - y_k)^2 = \frac{1}{n} \sum_{k=1}^{n} \left( \left( \sum_{i=1}^{4} a_i h(w_i^{\top} \mathbf{x}_k + b_i) \right) - y_k \right)^2$$

#### Cont. with example

Suppose that the NNW is of the form  $\phi(\mathbf{x}) = \sum_{i=1}^{4} a_i h(w_i^{\top} \mathbf{x} + b_i)$ , and we are given *n* samples from observation:  $\{(\mathbf{x}_k, y_k)\}_{k=1}^n$ , where  $y_i$ 's are called "labels". By "Learning/Training", we mean to minimize the loss function

$$L(W, b, a) = \frac{1}{n} \sum_{k=1}^{n} (\phi(\mathbf{x}_k) - y_k)^2 = \frac{1}{n} \sum_{k=1}^{n} \left( \left( \sum_{i=1}^{4} a_i h(w_i^{\top} \mathbf{x}_k + b_i) \right) - y_k \right)^2$$

Reference for one hidden layer NNW: https://cs230.stanford.edu/files/C1M3.pdf (by Andrew Ng).

\_\_\_\_\_\_XW < □ > < 畳 > < Ξ > < Ξ > Ξ → <<

### **Gradient Descent**

#### Definition

Let  $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$  be a differentiable function, the Gradient Descent algorithm is

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)$$



### **Gradient Descent**

#### Definition

Let  $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$  be a differentiable function, the Gradient Descent algorithm is

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)$$

Continuous time couterpart

$$\frac{d\mathbf{x}}{dt} = -\nabla f(\mathbf{x})$$



### **Gradient Descent**

#### Definition

Let  $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$  be a differentiable function, the Gradient Descent algorithm is

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)$$

#### Continuous time couterpart

$$\frac{d\mathbf{x}}{dt} = -\nabla f(\mathbf{x})$$

Both dynamical systems "stop" at  $\mathbf{x}^*$  where  $\nabla f(\mathbf{x}^*) = \mathbf{0}$ .



### **Convex Function**

Definition

 $f(\mathbf{x})$  is convex if the domain is a convex set and for any  $\mathbf{x}, \mathbf{y}, t \in [0, 1]$ ,

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \le tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

 $\operatorname{or}$ 

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$



### **Minimizing Convex Functions**

#### Lemma

Let f be differentiable and convex,  $\mathbf{x}^*$  is a minimizer if and only if  $\nabla f(\mathbf{x}^*) = 0$ . A continuously differentiable function f is L-smooth if its gradient is L-Lipschitz,

$$\left\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\right\| \le L \left\|\mathbf{x} - \mathbf{y}\right\|.$$

It is often required that  $\alpha \leq \frac{1}{L}!!!$  The minimizer  $\mathbf{x}^*$  is unique and gradient descent is guaranteed to converges to  $\mathbf{x}^*$  if step size  $\alpha < \frac{1}{L}$ .



Many functions are non-convex, e.g. the loss function of neural network. A non-convex function might have multiple local minima, local maxima, and saddle points.

Many functions are non-convex, e.g. the loss function of neural network. A non-convex function might have multiple local minima, local maxima, and saddle points.

#### Definition

- A point  $\mathbf{x}^*$  is critical point of f if  $\nabla f(\mathbf{x}^*) = 0$ ;
- ► A critical point  $\mathbf{x}^*$  of f is a saddle point if for all neighborhood U around  $\mathbf{x}^*$  there are  $\mathbf{y} \in U$  such that  $f(\mathbf{z}) \leq f(\mathbf{x}^*) \leq f(\mathbf{y})$ ;

XW

► A critical point  $\mathbf{x}^*$  of f is strict saddle if  $\lambda_{\min}(\nabla^2 f(\mathbf{x}^*)) < 0$ 

### **Non-convex Function**



XW

### **Non-convex Function**

#### Gradient Descent avoids strict saddle points

- ▶ With mild assumptions, the initial conditions s.t. GD converges to a saddle point lie on a set of measure zero. (Lee et al. 2016, 2019, Panageas and Piliouras 2017, Panageas et al. 2019)
- ▶ By adding perturbation properly,

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha(\nabla f(\mathbf{x}_t) + \xi_t), \quad \xi_t \sim \text{noise}$$

GD can escape from saddle point efficiently. (Ge et al. 2015, Jin et al. 2017, 2019)

Reference: Lecture notes by Ioannis Panageas for course CS 295 at UC Irvine. https://panageas.github.io/teaching/

Examples

► Solving linear systems:

$$A\mathbf{x} = b$$

Find  $\mathbf{x}^*$  such that  $||A\mathbf{x} - b||^2$  is minimized.

► Matrix factorization:

$$V = WH$$

where V is a given  $n \times m$  matrix, W is  $n \times r$ , and H is  $r \times m$ . Find  $W^*$  and  $H^*$  so that the Frobenius norm  $||V - W^*H^*||_F^2$  is minimized.



### Non-negative Matrix Factorization (NMF)

#### Background

Lee and Seung, Nature, 1999:

"We have applied non-negative matrix factorization (NMF), together with principal component analysis (PCA) and vector quantization (VQ), to a database of facial images. ... The NMF basis is radically different: its images are localized features that correspond better with intuitive notions of the parts of faces."



・ロット (日) (日) (日) (日)

### $\mathbf{NMF}$



NMF

~



×





xw

### NMF



 XW

 イロト イ団ト イミト イミト ミ シ へへ

# Global daily temperature (10.512 points x 20.440 days)



 $\mathbf{XW}$ 

э

### NMF

#### Problem

In NMF, we are asked to decompose a non-negative data matrix  $V \in \mathbb{R}^{n \times m}_+$  into the product of two non-negative matrix  $W \in \mathbb{R}^{n \times r}_+$  and  $H \in \mathbb{R}^{r \times m}_+$ . In optimization viewpoint, we try to solve the minimization problem

$$\min_{W,H} F(W,H) = \|V - WH\|_F^2,$$

where  $||A||_F^2 = \sum A_{ij}^2$  is the Frobenius norm.

- ▶ Vectorizing W and H, F(W, H) is a non-convex function;
- $\blacktriangleright$  Non-negative constraint, i.e., W and H are vectors in the non-negative orthant.

XW

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > の Q @

### **Projected Gradient Descent**

The previous session concerns about *unconstrained optimization problems*, i.e. the domain of f is the whole  $\mathbb{R}^n$ . But there are problems like NMF which has constraints. In this subsection we discuss how to solve constrained optimization problem:

 $\min_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x}),$ 

with Projected Gradient Descent.



### **Projected Gradient Descent**

The previous session concerns about *unconstrained optimization problems*, i.e. the domain of f is the whole  $\mathbb{R}^n$ . But there are problems like NMF which has constraints. In this subsection we discuss how to solve constrained optimization problem:

$$\min_{\mathbf{x}\in\mathcal{X}}f(\mathbf{x}),$$

with Projected Gradient Descent.

#### Definition

The projection of a point  $\mathbf{y}$ , onto a set  $\mathcal{X}$  is defined as the nearest point in the set to  $\mathbf{y}$ .

$$P_{\mathcal{X}}(\mathbf{y}) = \operatorname{argmin}_{\mathbf{x}\in\mathcal{X}} \|\mathbf{x} - \mathbf{y}\|^2.$$

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a differentiable function in come convex set  $\mathcal{X}$ . The Projected gradient descent is given by

$$\mathbf{x}_{t+1} = P_{\mathcal{X}}(\mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)).$$

# Ending

### Further topics

- Stochastic Gradient Descent;
- MinMax Optimization;
- ► Game Theory;
- ▶ Optimization on Manifold.

### Reading materials

- Notes for "Optimization for Machine Learning" by Chi Jin (Princeton), https://sites.google.com/view/cjin/ee539cos512
- ▶ Game Theory, by Tim Roughgarden (Columbia), http://timroughgarden.org/

XW

 Optimization on Manifold, by Nicolas Boumal (EPFL), http://sma.epfl.ch/ nboumal/

# Thank You!

