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Neural Network

Supervised Learning Problem:

Let K be a set (e.g. images, texts), with F : K → Rm a function. Suppose that the
values of F are known only on a proper finite set S ⊂ K. Can we predict the values
of F (x) for x ∈ K \ S?

Cat?
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Neural Network

Definition
The function φ : Rn0 → Rnq

φ : Rn0 T1−→ Rn1 h1−→ Rn1 T2−→ · · · Tq−→ Rnq
hq−→ Rnq

is called a Feed-forward Neural Network.

I Tj are affine maps of the form

Tj(x) = Ajx+ bj ,

The weight matrix Aj and bias vector bj represent the map from one layer to
another;
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Neural Network

I hj are the activation functions that are typically chosen from{
max{0, x},

(
1 + e−x

)−1 }
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Optimization for NNW

Training

I For a neural network φ with fixed architecture, φ is determined by the
parameters A = (A1, ..., Aq),b = (b1, ..., bq), provided a given set of activation
functions;

I To train the network, we choose, for example, the mean-square loss function:

L(A,b) =
∑
x∈S
‖F (x)− φ(x,A,b)‖ 2

and minimize such L using gradient descent.
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Optimization for NNW

Example: ReLU network with one hidden layer

I Activation function: h(x) = max{0, x};
I Input dimension: 3;

I Width of hidden layer: 4;

I Weight matrix W = {wi}4i=1: 4 is the number of neurons;

I Bias vector: b = (b1, ..., b4)

I zi = w>i x + bi → h(zi)→ ŷ = (h(z1), ..., h(z4))or
∑4

i=1 aih(zi)→ Output.
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Optimization for NNW

Cont. with example

Suppose that the NNW is of the form φ(x) =
∑4

i=1 aih(w>i x + bi), and we are
given n samples from observation: {(xk, yk)}nk=1, where yi’s are called “labels”. By
“Learning/Training”, we mean to minimize the loss function

L(W, b, a) =
1

n

n∑
k=1

(φ(xk)− yk)2 =
1

n

n∑
k=1

((
4∑

i=1

aih(w>i xk + bi)

)
− yk

)2

Reference for one hidden layer NNW: https://cs230.stanford.edu/files/C1M3.pdf
(by Andrew Ng).
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Gradient Descent

Definition
Let f(x) : Rn → R be a differentiable function, the Gradient Descent algorithm is

xt+1 = xt − α∇f(xt)

Continuous time couterpart

dx

dt
= −∇f(x)

Both dynamical systems “stop” at x∗ where ∇f(x∗) = 0.
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Convex Function

Definition
f(x) is convex if the domain is a convex set and for any x,y, t ∈ [0, 1],

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

or
f(y) ≥ f(x) +∇f(x)>(y − x)
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Minimizing Convex Functions

Lemma
Let f be differentiable and convex, x∗ is a minimizer if and only if ∇f(x∗) = 0.

A continuously differentiable function f is L-smooth if its gradient is L-Lipschitz,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .

It is often required that α ≤ 1
L !!! The minimizer x∗ is unique and gradient descent

is guaranteed to converges to x∗ if step size α < 1
L .
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Non-convex Function

Many functions are non-convex, e.g. the loss function of neural network. A
non-convex function might have multiple local minima, local maxima, and saddle
points.

Definition

I A point x∗ is critical point of f if ∇f(x∗) = 0;

I A critical point x∗ of f is a saddle point if for all neighborhood U around x∗

there are y ∈ U such that f(z) ≤ f(x∗) ≤ f(y);

I A critical point x∗ of f is strict saddle if λmin(∇2f(x∗)) < 0
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Non-convex Function
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Non-convex Function

Gradient Descent avoids strict saddle points

I With mild assumptions, the initial conditions s.t. GD converges to a saddle
point lie on a set of measure zero. (Lee et al. 2016, 2019, Panageas and
Piliouras 2017, Panageas et al. 2019)

I By adding perturbation properly,

xt+1 = xt − α(∇f(xt) + ξt), ξt ∼ noise

GD can escape from saddle point efficiently. (Ge et al. 2015, Jin et al. 2017,
2019)

Reference: Lecture notes by Ioannis Panageas for course CS 295 at UC Irvine.
https://panageas.github.io/teaching/
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Examples

I Solving linear systems:
Ax = b

Find x∗ such that ‖Ax− b‖ 2 is minimized.

I Matrix factorization:
V = WH

where V is a given n×m matrix, W is n× r, and H is r ×m. Find W ∗ and
H∗ so that the Frobenius norm ‖V −W ∗H∗‖ 2F is minimized.
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Non-negative Matrix Factorization (NMF)

Background

Lee and Seung, Nature, 1999:
“We have applied non-negative matrix factorization (NMF), together with principal
component analysis (PCA) and vector quantization (VQ), to a database of facial
images. ... The NMF basis is radically different: its images are localized features
that correspond better with intuitive notions of the parts of faces.”
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NMF

Problem
In NMF, we are asked to decompose a non-negative data matrix V ∈ Rn×m

+ into
the product of two non-negative matrix W ∈ Rn×r

+ and H ∈ Rr×m
+ . In optimization

viewpoint, we try to solve the minimization problem

min
W,H

F (W,H) = ‖V −WH‖ 2F ,

where ‖A‖ 2F =
∑
A2

ij is the Frobenius norm.

I Vectorizing W and H, F (W,H) is a non-convex function;

I Non-negative constraint, i.e.,W and H are vectors in the non-negative orthant.
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Projected Gradient Descent
The previous session concerns about unconstrained optimization problems, i.e. the
domain of f is the whole Rn. But there are problems like NMF which has
constraints. In this subsection we discuss how to solve constrained optimization
problem:

min
x∈X

f(x),

with Projected Gradient Descent.

Definition
The projection of a point y, onto a set X is defined as the nearest point in the set
to y.

PX (y) = argminx∈X ‖x− y‖ 2.

Let f : Rn → R be a differentiable function in come convex set X . The Projected
gradient descent is given by

xt+1 = PX (xt − α∇f(xt)).
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Ending

Further topics

I Stochastic Gradient Descent;

I MinMax Optimization;

I Game Theory;

I Optimization on Manifold.

Reading materials

I Notes for “Optimization for Machine Learning” by Chi Jin (Princeton),
https://sites.google.com/view/cjin/ee539cos512

I Game Theory, by Tim Roughgarden (Columbia), http://timroughgarden.org/

I Optimization on Manifold, by Nicolas Boumal (EPFL),
http://sma.epfl.ch/ nboumal/
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Thank You!


