
Highlights in Theoretical Computer Science

Jin-Yi Cai∗

jyc@cs.wisc.edu

Abstract

These are some brief lecture notes for the summer course at SHUFE. My purpose for these
lectures is to introduce the students to some elegant ideas in the Theory of Computing. The
assumption is that the students have had a very minimal prior exposure to the Theory of Com-
puting. I hope the selected topics can provide the students with some taste for this fascinating
subject beyond a standard introductory course. However, due to the short duration of the
summer course, I cannot provide a more in-depth introduction.

These notes are quite rough and uneven; some discussions are more detailed and others are
quite sketchy. No attempt is made to be complete, or fully representative. For lack of time I
have not polished them; errors are my responsibility.

1 Some Efficient Algorithms

Efficient algorithms are the life blood of computer science. It is the focus of perhaps one half of
Theoretical Computer Science (and probably the bigger half; the other half is complexity theory).

I will describe a couple of efficient algorithms.

1.1 Integer Multiplication

Consider the ancient problem of integer multiplication: Given two n bit integers x and y, we want
to compute their product x · y. The “school method” will multiply each bit of y to the whole of x,
one bit at a time, and then add these quantities up with appropriate shifts. This algorithm takes
roughly O(n2) many bit operations.

Instead, the Divide & Conquer strategy says that we partition x and y into roughly n
2 each:

x = x12
n
2 + x2, y = y12

n
2 + y2.

Now we notice that

x · y = (x1 · y1)2n + (x1 · y2 + x2 · y1)2
n
2 + (x2 · y2).

We can (recursively) multiply the four products (x1 · y1), (x1 · y2), (x2 · y1), and (x2 · y2). Then the
time complexity of this algorithm is roughly T (n) = 4T (n2). Solving this recurrence we get, alas,
O(n2). With no gain at all!

∗Department of Computer Sciences, University of Wisconsin-Madison.

1

However, all is not lost. We will (recursively) multiply (x1 · y1) and (x2 · y2). But the next step
sounds crazy: We form the sum(!)

sx = x1 + x2, and sy = y1 + y2,

(knowing that integer sum is cheap, in linear time.) And then also (recursively) multiply (sx · sy).
Note that

sx · sy = x1 · y1 + x1 · y2 + x2 · y1 + x2 · y2,

and since we already have (x1 · y1) and (x2 · y2), we can get (x1 · y2 + x2 · y1) by subtraction:

sx · sy − (x1 · y1 + x2 · y2).

Thus we obtain (x ·y) by doing three multiplications of n2 -bit integers. This yields an algorithm
that runs in time T (n) ≈ 3T (n/2) +O(n). Solving this recurrence we get T (n) = O(nlog2 3), which
is about O(n1.59).

Notice the “totally mangled quantities” sx = (x1 + x2) and sy = (y1 + y2), which turned out to
be the key to this success. So, in reasoning about efficient algorithms, it is not a good idea (and
unsound reasoning) to think that the only good moves are the intuitively natural moves.

1.2 Matrix Multiplication

Our second example for the Divide & Conquer strategy is matrix multiplication. Suppose X and Y
are two n×n integer matrices. We want to compute X ·Y , where we count integer multiplications
(and additions) as unit operations.

We write X and Y in block form of n
2 size:

X =

[
A B
C D

]
and Y =

[
E F
G H

]
.

Then

X · Y =

[
A B
C D

] [
E F
G H

]
=

[
AE +BG AF +BH
CE +DG CF +DH

]
.

If we naively apply Divide & Conquer, we would get

T (n) = 8T (
n

2
) +O(n2),

which gives O(n3), with no gain from “the definitional algorithm”.
Instead, according to the following Strassen algorithm, we form

P1 = A(F −H)

P2 = (A+B)H

P3 = (C +D)E

P4 = D(G− E)

P5 = (A+D)(E +H)

P6 = (B −D)(G+H)

P7 = (A− C)(E + F)

2

and then

X · Y =

[
P4 + P5 + P6 − P2 P1 + P2

P3 + P4 P1 + P5 − P7 − P3

]
.

This gives us a running time of

T (n) = 7T (
n

2
) +O(n2),

which is O(nlog2 7), roughly O(n2.81).
The world record currently is about O(n2.3728639) (due to Coppersmith and Winograd). Some

believe that it can be as low as O(n2+ε) for any ε > 0. No lower bound of the above form is known.

1.3 Fast Fourier Transform

Our third example (exemplar) algorithm is fast Fourier transform. Consider two polynomials of
degree (at most) d:

A(x) = a0 + a1x+ a2x
2 + . . .+ adx

d and B(x) = b0 + b1x+ b2x
2 + . . .+ bdx

d.

We want to compute their product

C(x) = A(x)B(x) = c0 + c1x+ a2x
2 + . . .+ c2dx

2d,

where ck =
∑

i+j=k aibj = a0bk + a1bk−1 + . . .+ akb0 (with aj and bj = 0 if j > d).
Key Observation: A polynomial of degree (at most) d is uniquely determined by its values

at any d+ 1 distinct points. 
A(x0)
A(x1)
A(x2)

...
A(xd)

 =


1 x0 x2

0 . . . xd0
1 x1 x2

1 . . . xd1
1 x2 x2

2 . . . xd2
...

...
...

. . .
...

1 xd x2
d . . . xdd




a0

a1

a2
...
ad

 .
This is a linear system with a Vandermonde matrix, having determinant

∏
i<j(xj − xi).

In other words: (d+ 1) unknown coefficients correspond to (d+ 1) conditions.
So a polynomial f(x) =

∑d
i=0 aix

i is given either by the coefficients a0, a1, a2, . . . , ad, or alter-
natively by the values f(x0), f(x1), f(x2), . . . , f(xd).

If we think of A(x) and B(x) as given by the values A(xi) and B(xi), then their product
polynomial C(x) is given by the values A(xi)B(xi). This representation for polynomials is ideal for
getting the product of two polynomials.

But this is useful for multiplying two polynomials only if we can get from one representation to
the other quickly. This can be done very efficiently if we choose the points x0, x1, x2, . . . , xd very
carefully.

Assume d+ 1 = n is a power of 2. If we pick

±x0,±x1, . . . ,±xn/2−1

and collect the even-degree terms and odd-degree terms together

Ae(x) =
∑
i

a2ix
2i = a0 + a2x

2 + . . .+ an−2x
n−2,

Ao(x) =
∑
i

a2i+1x
2i+1 = a1x

1 + a3x
3 + . . .+ an−1x

n−1,

3

then Ae(x) is a polynomial of x2 of degree n/2− 1, and

Ao(x) = x[a1 + a3x
2 + . . .+ an−1x

n−2],

which is a product of x with another polynomial of x2 of degree n/2 − 1. Furthermore, for any
polynomial p(x2) of x2, clearly p(x2) = p((±x)2). Thus if we choose ±x0,±x1, . . . ,±xn/2−1, there
will be a lot of savings in computation.

To wit:

A(xi) = Ae(x
2
i) + xiAo(x

2
i)

A(−xi) = Ae(x
2
i)− xiAo(x2

i)

However, once we used ±xi, say ±1, this trick cannot be repeated in real numbers. How to
repeat this recursively? This naturally leads to the use of complex numbers, in particular roots of
unity e2πki/n, for k = 0, 1, 2, . . . , n− 1. Denote by ω = e2πi/n the nth primitive root of unity.

We will rewrite the Vandermonde matrix

Mn(ω) =



1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

...

1 ωj ω2j . . . ωj(n−1)

...
...

...
...

...

1 ωn−1 ω2(n−1) . . . ω(n−1)(n−1)


,

by grouping even indexed rows and columns first, and the odd indexed rows and columns second.
The linear system

Mn(ω)


a0

a1
...

an−1

 =


A(ω0)
A(ω1

...
A(ωn−1)


becomes two linear systems on Mn/2(ω2), where for 0 ≤ j < n/2 we have the following equations:
the value A(ωj) is the jth row of

Mn/2


a0

a2
...

an−2

+ ωjMn/2


a1

a3
...

an−1

 ,
and the value A(ωj+n/2) is the jth row of

Mn/2


a0

a2
...

an−2

− ωjMn/2


a1

a3
...

an−1

 .

4

Thus the size n problem of discrete Fourier transform of

(a0, a1, a2, a3, . . . , an−1) −→ (A(ω0), A(ω1), A(ω2), A(ω3), . . . , A(ωn−1))

is reduced to two subproblems of n/2 size each: Transforming (a0, a2, . . . , an−2) and (a1, a3, . . . , an−1)
via Mn/2(ω2). Note that ω2 = e2πi/(n/2), exactly the primitive root of order n/2 for the n/2 size
problem.

This yields a complexity of T (n) = 2T (n/2) +O(n) = O(n log n).
Clearly the fast Fourier transform gives a super fast algorithm for integer multiplication.
Note that F = 1√

n
Mn(ω) is an Hermitian matrix: F

T
F = In, where F j,k = ωjk = ω−jk.

2 Some Theorems on Matchings and Coverings

There are several elegant theorems concerning matchings and coverings etc. These theorems are in
some sense all equivalent. They have far reaching algorithmic consequences. I will describe some
of these.

A graph G = (V,E) consists of a set of vertices V and a set of edges E, which are 2-element
(unordered) subsets of V .

We say a graph G is bipartite if V can be partitioned into two disjoint sets X ·∪ Y such that all
edges in E are between X and Y . We denote a bipartite graph as G = (X,Y,E).

A vertex cover, or a covering, of G is a subset C ⊆ V such that each edge in E contains at
least one vertex of C (and the edge is said to be covered by that vertex). A matching of G is a
subset M ⊆ E, such that no two edges in M share a vertex. A matching M is maximal if M is
not properly contained in another matching M ′. A matching M is maximum if |M | is the largest
among all matchings of G. A maximum matching is a maximal matching, but not vice versa. A
perfect matching of G is a matching that matches every vertex. A perfect matching is a maximum
matching. If a graph contains a perfect matching then a maximum matching is the same as a
perfect matching; otherwise (when no perfect matching exists in a graph) a maximum matching
still exists (but is not a perfect matching).

For any matching M of G, every vertex cover C must spend at least one vertex per each
matching edge. Hence |C| ≥ |M |. Thus

min{|C| : C is a vertex cover of G} ≥ max{|M | : M is a matching of G}.

On the other hand, if M is a maximal matching of G, then there are no edges e = {u, v} ∈ E such
that both u and v are not matched by some edge in M (or else we could enlarge M by getting a
larger matching M ′ = M ∪ {e}.) Hence every edge e = {u, v} ∈ E has at least one vertex matched
by M . Therefore if we take all vertices in M , we get a vertex cover of G. Thus

min{|C|} ≤ 2 max{|M |} ≤ 2 min{|C|}.

2.1 König’s Theorem

In 1931, Dénes Kőnig ∗ proved the following theorem:

∗Dénes Kőnig was the son of Gyula Kőnig, also a well-known mathematician. His last name is spelled as Kőnig
with the Hungarian double acute accent, while his theorem is usually written with a German umlaut, König. Dénes

5

Theorem 2.1. For any bipartite graph, the maximum size of a matching is equal to the minimum
size of a vertex cover.

We already know that min{|C|} ≥ max{|M |}, without assuming G is bipartite. The claim is
that for any bipartite graph, if M is a maximum matching, then there is a vertex cover C of size
at most |M | (thus it must be of the same cardinality). The proof is constructive.

Let G = (X,Y,E) be a bipartite graph, and suppose M is a maximum matching for G. To
construct a vertex cover of size |M |, we let U ⊆ X be the set of unmatched vertices on LHS.
Now consider all possible alternating paths starting from vertices in U . A path is alternating with
respect to M if it alternates between matching and non-matching edges. Let Z be the set of all
vertices reachable from U by alternating paths. This includes all of U , and all neighbors of U in
Y (all by necessarily non-matching edges, by the definition of U), and their neighbors in X by
(uniquely determined, if any) matching edges, and their neighbors by non-matching edges, and so
on. Let

K = (X − Z) ∪ (Y ∩ Z).

We claim that K is a vertex cover of G. Consider any edge e = {x, y} ∈ E. We show that if
x ∈ X ∩ Z then y ∈ Y ∩ Z. First suppose e ∈M . Then it must be that x 6∈ U , since no matching
edge can touch U . Since x ∈ X ∩ Z, x must be reached by an alternating path (of positive even
length) from U , and its last edge is in M . And so e is that matching edge (since there is a unique
matching edge incident to x), thus y ∈ Y ∩ Z, because the path that reached x passed through y.
Next suppose e 6∈ M . Then by x ∈ X ∩ Z, x is reachable by an alternating path (of length ≥ 0)
from U . We can extend this path by e to form an alternating path to reach y. This extension is
an alternating path because e 6∈ M , and either x ∈ U , or the alternating path (of positive length)
that reaches x ends with a matching edge. Then, y is also reachable by an alternating path from
U . Thus y ∈ Y ∩ Z.

Now we claim that K is a minimum vertex cover. (This is where we will use the fact that M
is a maximum matching; by the inequality max{|M |} ≤ min{|C|} this use is also necessary.) We
note that every y ∈ Y ∩ Z must be matched by some edge in M . Otherwise, there will be an
augmenting path, i.e., an alternating path that starts and ends both with non-matching edges. For
any augmenting path, if we flip every edge along this path, between matching and non-matching,
we could enlarge |M |, a contradiction. Also, trivially, every x ∈ X −Z is matched by some edge in
M , since all unmatched vertices in X are already in U , a subset of Z. Finally all matching edges

Kőnig attributed the idea of studying matchings in bipartite graphs to his father Gyula Kőnig. Dénes Kőnig is also
known for the innocent looking lemma that says that every infinite tree either has a vertex of infinite degree or
has an infinite path. (Try prove this!) His father Gyula Kőnig is remembered today mainly for his contributions
to, and his opposition against, Cantor’s set theory. In 1904, Gyula Kőnig announced he has disproved Cantor’s
continuum hypothesis. Unfortunately his proof depended on a theorem proved in the thesis of Felix Bernstein,
but Bernstein’s theorem was only valid in a more restricted sense than Bernstein claimed. Ernst Zermelo (of the
axiomatized Zermelo-Fraenkel set theory) found the error and Gyula Kőnig withdrew his claim. Bernstein is known
for the Schröder-Bernstein theorem that says that if there is an injection from A to B and from B to A, then
there is a bijection between A and B. This is an essential ingredient in the notion of cardinality. Cantor’s idea of
diagonalization led to Turing’s formulation of undecidability. Juris Hartmanis used the idea of Schröder-Bernstein
theorem to show that all the usual NP-complete sets are polynomial time isomorphic, leading to the yet unproved
Hartmanis Conjecture for NP. Cantor on the other hand had mixed ideas about Kőnig’s contributions: At one point
he said, “the positive contributions from Kőnig himself are well done.” But at a later time he said, “What Kronecker
and his pupils as well as Gordan have said against set theory, what Kőnig, Poincaré, and Borel have written against
it, soon will be recognized by all as rubbish.”

6

incident to y ∈ Y ∩Z match vertices in X ∩Z. Thus all matching edges incident to x ∈ X −Z and
to y ∈ Y ∩ Z are distinct. Thus |K| ≤ |M |. The proof is complete.

2.2 König-Egerváry Theorem

The term rank of a (0, 1)-matrix is the largest number of 1’s that can be chosen from the matrix
such that no 2 selected 1’s lie on the same line (row or column). A set S of rows and columns is
a cover of a (0, 1)-matrix if the matrix becomes a zero matrix after all the lines in S have been
deleted. (In other words, the rows and columns in S contain all 1’s.)

Theorem 2.2. The term rank of a (0, 1)-matrix is the cardinality of its smallest cover.

If we represent a bipartite graph by its adjacency (0, 1)-matrix, then clearly
1. Term rank is the same as the size of a maximum matching.
2. A cover of a (0, 1)-matrix is a vertex cover of the bipartite graph it represents.
König-Egerváry Theorem applies to rectangular matrices (not necessarily square matrices).

2.3 Hall’s Theorem

A Marriage Problem: Given a set of n boys and a set of n girls, let each boy make a list of the
girls he is willing to marry. Is there a perfect marriage plan where every boy is married to a girl on
his list (and every boy is married to exactly one girl and every girl is married to exactly one boy).

Hall’s theorem says that such a perfect marriage plan exists if and only if for every subset B of
boys, the union of the lists from B has cardinality at least |B|.

In terms of a bipartite graph representing the boys and girls and lists (of desirables) this is
a problem about the existence of a perfect matching (this is why it’s called matching). Hall’s
Theorem says

Theorem 2.3. In a bipartite graph G = (X,Y,E), with |X| = n and |Y | = m, a matching exists
that matxches all vertices in X iff for every B ⊆ X, the neighbor set Γ(B) = {y ∈ Y | (∃x ∈
B), {x, y} ∈ E} has cardinality |Γ(B)| ≥ |B|.

Corollary 2.4. In a bipartite graph G = (X,Y,E), with |X| = |Y | = n, a perfect matching exists
iff for every B ⊆ X, the neighbor set Γ(B) = {y ∈ Y | (∃x ∈ B), {x, y} ∈ E} has cardinality
|Γ(B)| ≥ |B|.
†

The same ideas can be applied to the so-called
Assignment Problem: Given a set of n employees and n tasks. Each employee fills out a list
of the tasks he is be able to preform. Each task requires just one employee to preform and each
employee can perform only one task. Then, can we assign each employee a task he is capable of,
such that all tasks are fulfilled?

†This theorem is due to Philip Hall (1935), not to be confused with Marshall Hall, Jr. (no relation to Philip Hall)
who was also a prominent mathematician. Further confusing the matter is the following. By examining Philip Hall’s
original proof carefully, Marshall Hall was able to prove a generalization, and went on to write a well known book
Combinatorial Theory. Another confusion is that both Philip Hall and Marshall Hall made significant contributions to
group theory, and Philip Hall’s contribution to group theory was truly seminal. Marshall Hall was the Ph.D. advisor
to Donald Knuth.

7

Hall’s theorem says that such an assignment is possible iff for every subset of k employees, the
union of their lists has cardinality at least k.

Later we will consider a weighted version of this Assignment Problem.
The proof of Hall’s theorem goes as follows:
Clearly if a matching exists that matches all X, then for every subset S ⊆ X, its neighbor set

Γ(S) has cardinality at least |S|. So the condition in Hall’s theorem is necessary.
Suppose the condition in Hall’s theorem is satisfied. Take a maximum matching M . We wish

to prove that M matches all X. Suppose not, and let u ⊆ X be an unmatched vertex in the LHS.
Consider the set of all vertices reachable by an alternating path from u. This set can be easily
computed by a Breath-First-Search. Let

X2k = {x ∈ X | x is reachable from u by an alternating path of length ≤ 2k},
Y2k−1 = {y ∈ Y | y is reachable by from u an alternating path of length ≤ 2k − 1}.

Then X0 = {u}. Y1 = its neighbor set Γ({u}). We have |Γ({u})| ≥ 1. The connecting edges from
{u} to Γ({u}) are all nonmatching edges, by the definition of U .

To gain some intuition, we can unravel this definition. Each vertex in Y1 = Γ({u}) must be
incident to a matching edge, otherwise we can directly add an edge to M and enlarge M . So we
can assume each vertex in Y1 has a (unique) vertex in X matched by M . Since u is unmatched,
the matching vertices to Y1 are distinct from u. So now we have |X2| = 1 + |Y1|.

Inductively we have a subset X2k ⊆ X containing {u}, and a subset Y2k−1 ⊆ Y , where every
y ∈ Y2k−1 has a unique matching edge back to X2k. So |X2k| = 1 + |Y2k−1|.

Now by the condition of Hall’s Theorem, the neighbor set of X2k has cardinality ≥ |X2k| >
|Y2k−1|. So |Y2k+1| > |Y2k−1|. Then the newly added vertices in Y2k+1 − Y2k−1 must be matched
by M , or else we could have enlarged |M | by flipping the matching and non-matching edges on
an augmenting path from u to this unmatched vertex. Since M is a maximum matching, this is
impossible.

However, we have reached a contradiction, by showing that the sequence |Y1| < . . . < |Y2k−1| <
|Y2k+1| is an ever increasing sequence of integers (in a finite graph). The contradiction says really
says that, whenever we start with some matching M in a graph that satisfies the condition of Hall’s
Theorem, the process described above will find an augmenting path to increase the size |M |, and
the process terminates with a matching that matches all vertices of X.

2.4 Hall’s Theorem implies König’s Theorem

As König’s Theorem and König-Egerváry Theorem are obviously equivalent, we will show that
Hall’s Theorem implies König-Egerváry Theorem.

Let B be an n ×m (0, 1)-matrix. Let p = term rank of B, and q = minimum cover size of B.
By the connection between maximum matching and minimum vertex cover, we have p ≤ q. We
just need to prove p ≥ q.

Let’s permute the rows and columns of B so that the first r rows and first s columns cover all
1’s in B, where q = r + s. Now consider the submatrix B′ of B consisting of the first r rows and
last m − s columns. For every row 1 ≤ i ≤ r of B′, consider the set of column indices where the
entry is 1:

Ai = {j|s < j ≤ m,Bi,j 6= 0}.

8

Each Ai 6= ∅, for otherwise we can remove ith row and still cover all 1’s. In fact, for any subset
I ⊆ {1, . . . , r}, the cardinality |

⋃
i∈I Ai| must be at least |I|, for otherwise we could replace those

rows in I by fewer columns to cover all 1’s. Hence B′ satisfies the condition of Hall’s Theorem, and
therefore there is a matching of size r consisting of 1’s in B′.

Similarly we can define B′′ to be the submatrix of B consisting of the first s columns and the
last n−r rows. By the same argument (every subset of columns of B′′ has as many rows with some
1’s) we can get a matching of size s consisting of 1’s in B′′. Together they prove the theorem.

2.5 The Hungarian Algorithm

Now we consider the Assignment Problem with weights. Alternatively, in terms of matchings, we
are given an n × n square matrix A of nonnegative integers. We want to find a perfect matching
that has the maximum weight, which is defined to be the sum of the matching edges weights.

Note that essentially the same question can be asked for minimization (e.g., to minimize cost),
and can be solved by an easy reduction. Just replace each entry Ai,j by N − Ai,j for some large
number N (e.g., the maximum of all Ai,j). The same algorithm works. There is no essential
difference.

We think of the given matrix A as the weighted adjacency matrix of the complete bipartite
graph with n vertices on each side, and the entry Ai,j is the weight of the edge (i, j).

To find a maximum weighted perfect matching in a weighted complete bipartite graph Kn,n is
just as general as finding a maximum weighted matching in a weighted (not necessarily complete)
bipartite graph with n vertices on each side, since we can add 0-weight edges. For rectangular
matrices (i.e., for bipartite graphs of unequal sides) we can also easily append dummy vertices (and
0-weight edges).

So our problem can also be described as
Maximum weight bipartite matching: Given a bipartite weighted graph G = (X,Y,E,w),
where w : E → R, find a maximum weight matching, i.e., a matching M of G such that

∑
e∈M w(e)

is maximized.
(The weights need not be nonnegative, although we can increase every weight by an equal

amount, so that without loss of generality we can assume they are nonnegative.)
Start with any matching M , an alternating tree is a tree rooted at some unmatched (free) vertex

v in which every path from v is an alternating path.
A feasible labeling (or a potential) is a mapping ` : V = X ∪Y → R, such that: For every x ∈ X

and y ∈ Y ,
`(x) + `(y) ≥ w(x, y).

Given a feasible labeling `, an edge (x, y) is tight if `(x) + `(y) = w(x, y). The equality graph
(with respect to `) is G` = (X,Y,E`) consisting of all tight edges:

E` = {(x, y) ∈ X × Y | `(x) + `(y) = w(x, y)}.

Theorem 2.5. If ` is a feasible labeling, and M is a perfect matching in G`, then M is a max-weight
matching.

This is due to Kuhn and Munkres. Because the ideas behind it are closely related to König’s and
Egerváry’s theorems, the algorithm that follows this theorem is called the Hungarian algorithm.

9

To prove this theorem of Kuhn and Munkres, consider any perfect matching M ′ in G (not
necessarily confined in G`).∑

e∈M ′
w(e) ≤

∑
e=(x,y)∈M ′

[`(x) + `(y)] =
∑
x∈X

`(x) +
∑
y∈Y

`(y) =
∑
v∈V

`(v).

since every vertex is contained in exactly one edge of M ′.
On the other hand, for M , we have equality, because M is in G` where every edge is tight. Thus

the total weight of M is at least as large as any perfect matching M ′. This proves the theorem.
This relation: For every perfect matching M ′ in G and every feasible labeling ` on V we have∑

e∈M ′
w(e) ≤

∑
v∈V

`(v),

is the quintessential min-max primal-dual relation in, e.g., linear programming.
Now the algorithm. The goal is to find a perfect matching in G`. The outline of the idea is as

follows: Start with any feasible labeling ` and any matching M in G`.
While M is not a perfect matching, repeat the following:

1. Find an augmenting path for M in G`. This increases |M |.
2. If no augmenting path exists, then improve `.
We can define an initial ` by assigning for every x ∈ X, `(x) = maxy∈Y w(x, y), and for every

y ∈ Y , `(y) = 0. We can take the initial M = ∅. We maintain the invariant that all the edges of
M are tight. (Thus M is a matching in G`.)

Suppose M is not yet a perfect matching. Let RX ⊆ X and RY ⊆ Y be the unmatched vertices.
Let Z be the set of vertices reachable by alternating paths from RX by edges in G`. (Thus edges
used from X to Y are tight, and from Y to X are not only tight but also in M .) This can be
computed by breadth-first search. If RY ∩ Z is nonempty, then we found an augmenting path.
Thus we can modify M so that |M | is increased by 1. If RY ∩ Z is empty, then let

∆` = min{`(x) + `(y)− w(x, y) | x ∈ X ∩ Z, y ∈ Y − Z}.

This is the minimum (but positive) slack from X ∩Z to Y −Z. Notice that this is positive because
none of those edges are tight (if such an edge were tight, that y would be in Z.) Now modify ` to
`′ by decreasing on each x ∈ X ∩ Z by ∆` and increasing on each y ∈ Y ∩ Z by the same ∆`.

We claim the updated `′ is also a potential: Any edge between X ∩Z and Y ∩Z is clearly OK
since `(x)+`(y) is unchanged. Any edge between X−Z and Y −Z is unaffected. Any edge between
X − Z and Y ∩ Z is OK, since only the values `(y) are increased. The only worry is for edges
between X ∩ Z and Y − Z; but ∆` is defined to be so that the dominance w(x, y) ≤ `′(x) + `′(y)
still holds.

The new equality graph G`′ still contains M . This is because M is in G`. If e = (x, y) ∈ M
has y ∈ Y ∩ Z, then it is between X ∩ Z and Y ∩ Z (the alternating path comes back from y to
x). So e remains tight in G`′ . If e ∈M has y ∈ Y − Z then it must be that x ∈ X − Z; otherwise
x ∈ X ∩Z and e is a matching edge implies that x 6∈ RX and x is taken into Z because the unique
matching edge e brings it in, but then y must have been already in Z. And so e is between X −Z
and Y − Z and then it is unaffected by the change from ` to `′.

But with respect to `′ there is at least one more reachable vertex in Y , as all edges between
X ∩ Z and Y ∩ Z remain tight under `′. Thus Z increases. So after at most |V | steps we must

10

increase |M |. This gives a polynomial time algorithm. Naive estimate gives a running time of
O(n4). A more careful analysis gives O(n3).

The Hungarian Method

1. Generate initial labelling ` and matching M in G`.
2. If M is perfect, stop. Otherwise pick a free vertex x0 ∈ X. Set S = {x0} and T = ∅.
3. If ΓG`

(S) = T , update ` (this forces the updated ΓG`
(S) 6= T .)

∆` = min
x∈S,y∈Y−T

{`(x) + `(y)− w(x, y)}

`′(v) =


`(v)−∆` if v ∈ S
`(v) + ∆` if v ∈ T
`(v) otherwise

4. If ΓG`
(S) 6= T , pick y ∈ ΓG`

(S)− T .

• If y unmatched, then we found an augmenting path from x0 to y. Augment M by
flipping all edges along M . Goto 2.
• If y is matched, say to x, then extend the alternating tree: S := S ∪ {x}, T := T ∪ {y}.

Goto 3.

Here is another way the Hungarian Algorithm is often presented. We present a minimization
version.

1. Define the matrix of edge costs. 
10 19 8 15 19
10 18 7 17 19
13 16 9 14 19
12 19 8 18 19
14 17 10 19 19


2. Reduce the rows by subtracting the minimum value of each row from that row.

2 11 0 7 11
3 11 0 10 12
4 7 0 5 10
4 11 0 10 11
4 7 0 9 9


3. If there are columns without a zero, reduce the columns by subtracting the minimum value

of each column from that column. 
0 4 0 2 2
1 4 0 5 3
2 0 0 0 1
2 4 0 5 2
2 0 0 4 0



11

4. Cover the zero elements with the minimum number of lines. (If the number of lines is equal
to the number of rows then go to step 9.)

0 4 0 2 2

1 4 0 5 3

2 0 0 0 1

2 4 0 5 2

2 0 0 4 0




(This should remind you of König’s Theorem.)

5. Add the minimum uncovered element to every covered element. If an element is covered
twice, add the minimum element to it twice.

1 5 2 3 2
1 4 1 5 3
3 1 2 1 2
2 4 1 5 2
3 1 2 5 1


6. Subtract that minimum element from every element in the matrix.

0 4 1 2 2
0 3 0 4 2
2 0 1 0 1
1 3 0 4 1
2 0 1 4 0


The effect of these two steps is: For the un-stricken out submatrix, we subtracted the mini-
mum. For the submatrix in the intersection of rows and columns both stricken out, we added
that minimum. For the rest no change is done:

0 4 0 2 2

1 4 0 5 3

2 0 0 0 1

2 4 0 5 2

2 0 0 4 0




(

1 4 5 3
2 4 5 2

)
→

(
0 3 4 2
1 3 4 1

)
and

0
0
0

 →

1
1
1


7. Cover the zero elements again. If the number of lines covering the zero elements is not equal

to the number of rows, return to step 5.

12

0 4 1 2 2

0 3 0 4 2

2 0 1 0 1

1 3 0 4 1

2 0 1 4 0




(This example needs to be reduced once more.)

Project: Explain the relationship between these two expositions of the Hungarian Algorithm.

3 Randomization in Algorithms

Randomness, both as a proof technique as well as a computational resource, has a significant role
in the modern theory of algorithm and complexity.

3.1 Basic Probability

It is perhaps one of the primal experiences, much like the primal experiences with arithmetic quan-
tity or geometric shape, that people have come to “know” randomness. Any systematic exploration
was started much later, starting with Pascal, Fermat and Laplace. But it is always a nettlesome
question as to what exactly is “randomness”, and what exactly is “probability”. I don’t think this
question has ever been truly satisfactorily answered, despite a lot of work on this topic. Perhaps
there is no one single answer. However, brushing aside the “nature” of what is “probability”,
modern mathematics basically took the following perspective, after Kolmogorov. We start with
an arbitrary measure space (Ω,E, µ), where Ω is some underlying set, equipped with a measure
function µ : E → R+, where E is a collection of subsets of Ω called a σ-algebra satisfying certain
closure properties, and (being a probability measure) µ(Ω) = 1. (Being a measure, µ must satisfy
σ-additivity, namely for disjoint countable family {Si} ⊆ E, µ(

⋃∞
i=1 Si) =

∑∞
i=1 µ(Si). E is a

σ-algebra if Ω ∈ E, and E is closed under countable union, intersection, and complement. We will
not discuss further the properties of a σ-algebra. For most of what we do, the set Ω will be finite,
and E consists of all subsets of Ω.)

The Kolmogorov foundation of probability theory is a brilliant device to refocus the “theory
of probability” as an internal mathematical subject, excluding all issues having to do with what
is “randomness” as we experience it in the external world. It essentially gets rid of the issue of
any reference to how this “probability theory” is to be related to the every day (or not so every
day) notion of “chance” in the external world. A gambler (or any user of probability theory) has
to decide what is an appropriate probability space to presume, as a mathematical model for his
particular situation at hand. This modeling is external to any mathematical theory of probability.
The mathematics of “probability theory” in the sense of Kolmogorov only helps to “calculate”
the outcomes once the basic probability of events have been assigned. Thus, in Kolmogorov’s
probability theory, there is no meaning of a “fair coin”; instead, one merely sets up a suitable
probability space, such as {H,T}, and postulate that µ(H) = µ(T) = 1/2. It is murkier what a
quantum physicist really means when he talks about the “probability” of observing this or that
quantum state.

13

What if we want “two independent fair coin flips”? In Kolmogorov’s probability theory, we can
set up a product probability space, {H,T}2, and assign µ(HH) = µ(HT) = µ(TH) = µ(TT) = 1/4.
Note that in this 4-point space, there is, strictly speaking, no notion of time.

While the Kolmogorov foundation is fine, it does seem to be somewhat sterile, and lacking
certain intuition of “probabilistic thinking”. For one thing, we do like to have a primitive notion of
an independent coin flip. Moreover, if after several independent fair coin flips, we decided to have
another one. This should not disturb any previous probability calculation. Instead in Kolmogorov’s
framework we must re-constitute a new probability space all over again. Technically all previous
probability calculations must be carried out now in this new probability space. Of course they take
the same values, but conceptually they now take place in a different probability space. This, I find
unnatural and unsatisfactory. Frequently in an algorithm we want to be able to flip more coins
as we go along. And this notion of time step is natural and intuitively helpful. It is somewhat
unnatural to suppose we must have a super probability space in place a priori, which in its very
definition has a built-in structure of how many coin flips we can have. (There are ways around this
in Kolmogorov’s framework, but they all seem contrived and unnatural.)

Luckily, for almost everything we discuss here, it will be over some finite (or at most countably
infinite and recursive) space. Most of the time it will just be over some {0, 1}n, or something
similar. There will be no philosophical difficulties by taking a naive approach to the concept of
probability, but one which does admit a primitive notion of a new independent bit. In principle
we can enumerate all the basic events and assign them “atomic probabilities” that add to one.
Therefore we will take the following point of view. We will assume whenever we need we can have
an independent additional coin flip (which may not be a fair coin). We will operate at a more
intuitive level of “probability”, as if we had a definite meaning of a physical “randomness”. Thus
we can say, for example, perform the following random trials independently for certain number
of times with certain probability. We take this approach with the understanding that, whenever
any potential difficulty should arise, we immediately retreat back to the safe cocoon of Kolmogorov
foundation of measure space, and effectively say that: the only meaningful thing is what’s happening
in the following measure space; any implication to the “outside world” (such as what exactly does
it mean by a random step) is not the responsibility of our probability analysis and any conclusions
thereof.

3.1.1 Markov’s Inequality

The first inequality to consider is Markov’s Inequality. It deals with any random variable that
takes only nonnegative values and the estimate is in terms of its expectation. Technically we
need to assume it has a finite expectation, however, one can apply it with abandon, for when the
nonnegative random variable has infinite expectation the estimate is trivially true.

Theorem 3.1. Let X be a random variable such that X ≥ 0 and E [X] <∞. For all a > 0,

Pr[X ≥ a] ≤ E [X]

a

The expectation E [X] is defined to be
∫

ΩXdµ. This theorem gives us a bound on the probability
that X takes on a value that is greater than its expected value by a given amount. We give a quick
proof of the theorem:

14

Proof. Let I be an indicator variable for the event X ≥ a. That is,

I =

{
1 if X ≥ a
0 if X < a

Note that

I =

{
≤ X

a if X ≥ a
= 0 if X < a

≤ X

a
.

Clearly, E [I] = Pr[X ≥ a]. Then,

Pr[X ≥ a] =

∫
Ω
Idµ =

∫
X≥a

1dµ ≤
∫
X≥a

X

a
dµ ≤

∫
Ω

X

a
dµ =

E [X]

a
.

3.1.2 Chebyshev Inequality

Theorem 3.2. For any random variable X with finite E [X] and Var(X), and let a > 0,

Pr[|X − E [X] | ≥ a] ≤ Var(X)

a2

Here the variance Var(X) is defined as E
[
(X − E [X])2

]
= E

[
X2
]
−E [X]2, and technically we

must assume it is finite. However, the above estimate is (trivially) true even if it is infinite.

Proof. Define a random variable Y = (X − E [X])2. Then,

Pr[|X − E [X] | ≥ a] = Pr[Y ≥ a2]

≤ E [Y]

a2

=
Var(X)

a2

In the above derivation, the inequality is obtained using the Markov’s inequality.

3.1.3 Chernoff Bound

It may appear that Markov’s inequality is pretty weak. However it is very applicable in many
situations, mainly because it only assumes that the random variable under consideration is non-
negative and does not assume anything about its distribution. Judiciously applied it can yield
remarkably sharp bounds. In this section, we use it to prove the Chernoff bound, which is a
powerful inequality dealing with sums of independent random variables.

Before we give the statement of the Chernoff bound, we introduce the variables it will use. Let
{X1, X2, · · · , Xn} be a set of n independent, identically distributed random variables such that
each Xi has

Pr[Xi = 1] = Pr[Xi = −1] =
1

2
.

Let Sn be their sum: Sn =
∑n

i=1Xi.

15

Theorem 3.3. For all n, and for all ∆ > 0,

Pr[Sn ≥ ∆] < e−∆2/2n

Before proving this theorem, we note that it can be restated as

Pr[Sn ≥ ε · n] ≤ e−
1
2
ε2n = (e−

1
2
ε2)n

or
Pr[Sn ≥ α ·

√
n] ≤ e−

1
2
α2

If we think of ε and α as positive constants, then the first inequality says the probability of having
an Θ(n) deviation from expectation (0) is exponentially small, and the second inequality says that
this “tail probability” balances out at Θ(

√
n) away from expectation. This last statement is in

accord with the central limit theorem, which states that

lim
n→∞

Pr[Sn ≥ α ·
√
n] =

∫ ∞
α

1√
2π
e−

x2

2 dx.

The advantage of the Chernoff Bound is that it is valid for all n and a, and not merely a statement
of limit.

Now, we prove the theorem.

Proof. The trick is to consider the exponentiation of Sn, namely the random variable eλSn . Here
λ > 0 is some number to be fixed later. We compute the expectation of eλSn as follows.

E
[
eλSn

]
= E

[
eλ

∑n
i=1Xi

]
= E

[
n∏
i=1

eλXi

]
=

n∏
i=1

E
[
eλXi

]
To get the last equality, we use the assumption that the {Xi} are independent random variables
and hence {eλXi} are also independent. (Recall that, for independent random variables X and Y ,
the expectation is multiplicative E [XY] = E [X] E [Y].) For any i, the random variable eλXi takes
values eλ and e−λ, each with probability 1/2. Its expectation is

E
[
eλXi

]
= cosh(λ) =

eλ + e−λ

2

For λ > 0, the above quantity is bounded by

eλ + e−λ

2
< eλ

2/2.

One can prove the above inequality by analyzing the Taylor expansion of LHS and RHS. We do
this analysis at the end of this proof. Using this bound, we have

E
[
eλSn

]
<

n∏
i=1

eλ
2/2 = eλ

2n/2

We can now apply Markov’s inequality to get:

Pr[Sn ≥ ∆] = Pr[eλSn ≥ eλ∆] ≤
E
[
eλSn

]
eλ∆

<
eλ

2n/2

eλ∆

16

The above inequality is true for any λ > 0, so we are now free to choose λ to optimize it. To
get the tightest upper bound, we minimize the exponent in the above function. Standard calculus
technique shows that a minimum occurs at λ = ∆/n. This gives us

Pr[Sn ≥ ∆] < e−∆2/2n

Finally, we show that
eλ + e−λ

2
< eλ

2/2.

The Taylor expansion of LHS is

coshλ = 1 +
λ2

2!
+
λ4

4!
+ · · ·

The Taylor expansion for the function ex shows that

eλ
2/2 = 1 +

λ2

2
+

(λ2/2)2

2!
+

(λ2/2)3

3!
+ · · ·

Compare the two series term by term. The kth term of LHS is λ2k/(2k)!, while that of eλ
2/2 is

(λ2/2)k/k!. Focusing only on the even factors, we have (2k!) ≥ 2k · k! and strictly so for k > 1.
Thus,

coshλ < eλ
2/2.

By symmetry,
Pr[|Sn| ≥ ∆] < 2e−∆2/2n

There are several different forms of Chernoff Bound which will be useful. They all concern tail
probabilities of sums of independent random variables. Theorem 3.3 can be generalized as follows.

Let {X1, X2, · · · , Xn} be a set of n independent 0-1 random variables, with

Pr[Xi = 1] = pi, Pr[Xi = 0] = 1− pi,

and let p =
∑n

i=1 pi/n. We define the centralized random variables {Y1, Y2, · · · , Yn} where Yi =
Xi − pi, then

Pr[Yi = 1− pi] = pi, Pr[Yi = −pi] = 1− pi,
and E [Yi] = 0. Let Sn =

∑n
i=1 Yi =

∑n
i=1Xi − pn.

Theorem 3.4. For any ∆ > 0,
Pr[Sn ≥ ∆] ≤ e−2∆2/n.

By symmetry, the bound applies to −Sn as well, and so

Pr[|Sn| ≥ ∆] ≤ 2e−2∆2/n.

Note that when we take ∆ = δpn, then

Pr[|
n∑
i=1

Xi − pn| > δpn] < 2e−2δ2p2n.

Here is another form. Let {X1, X2, · · · , Xn} be a set of n independent 0-1 random variables,
with Pr[Xi = 1] = p. Then

17

Theorem 3.5. For any 0 < δ < 1/2,

Pr[
n∑
i=1

Xi > (1 + δ)pn] < e−δ
2pn/4

and

Pr[
n∑
i=1

Xi < (1− δ)pn] < e−δ
2pn/2.

Theorem 3.5 is better than Theorem 3.4 for small p.
For not necessarily 0-1 random variables,

Theorem 3.6. Let Xi, 1 ≤ i ≤ n, be mutually independent with all E [Xi] = 0 and all |Xi| ≤ 1.
Let Sn =

∑n
i=1Xi. Then for all ∆ > 0,

Pr[Sn > ∆] < e−∆2/2n.

The proofs of these versions of Chernoff Bound all follow similar lines.
A version of this type of bound also holds with hypergeometric distribution. Randomly pick

n balls without replacement, from N black and white balls, with pN black balls. Let S be the
number of black balls among n balls picked. The distribution is

Pr[X = k] =

(
pN
k

)((1−p)N
n−k

)(
N
n

) .
Then

Theorem 3.7. For any ∆ ≥ 0,

Pr[|S − pn| ≥ ∆] ≤ 2e−2∆2/n.

This is known as the Hoeffding bound.

3.1.4 Universal Hashing

Definition 3.8 (Universal family of hash functions). Let U and T be finite sets. Let S be an
index set for a family of functions {hs : U → T}s∈S. {hs}s∈S is called a universal family of hash
functions if ∀α, β ∈ T, ∀x, y ∈ U, x 6= y,

Pr
s∈S

[hs(x) = α ∧ hs(y) = β] =
1

|T |2

Notice that the RHS of the equation above 1/|T |2 is the probability of getting α and β when
we choose two elements independently and uniformly at random from T .

The proper treatment in the Kolmogorov framework will be to define a measure space with
the underlying set S, equipped with the uniform distribution. Then for all fixed x ∈ U , the map
Zx : s 7→ hs(x) is a random variable.

18

We have ∀x 6= y ∈ U , ∀α, β ∈ T , Prs∈S [Zx(s) = α ∧ Zy(s) = β] = 1
|T |2 . Hence, ∀α ∈ T, ∀x ∈ U ,

take any y ∈ U , and y 6= x, (we assume |U | ≥ 2),

Pr
s∈S

[Zx(s) = α] =
∑
β∈T

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β]

=
∑
β∈T

1

|T |2

=
1

|T |

So, Zx is a uniform random variable on T . It follows that for any x 6= y ∈ U and α, β ∈ T ,

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β] = Pr
s∈S

[Zx(s) = α] · Pr
s∈S

[Zy(s) = β].

So, for any x 6= y ∈ U , the random variables Zx and Zy are independent. The definition of universal
hash function is equivalent to asking a set of pairwise independent and uniformly distributed random
variables, {Zx}x∈U . The random variables in this set may be jointly dependent, but any two of
them are independent.

However, instead of thinking in terms of pair-wise independent random variables Zx(s), we
rather think of hs(x) = Zx(s) as a random map from U to T , by randomly choosing an index
s ∈ S. The two views are of course completely equivalent here.

An Example: Let p be a prime number. Then Z/p = {0, 1, . . . , p − 1} with the operations
+ and · forms a finite field. Consider the map hs=(a,b) : x 7→ ax + b for a, b ∈ Z/p. We will verify
that {h(a,b)}a,b∈Z/p is a universal family of hash functions.

For all x, y, α, β ∈ Z/p, x 6= y, how many pairs (a, b) ∈ Z/p are there satisfying the following
equations?

ax+ b = α

ay + b = β

(In the above equations, a and b are the unknowns.) The determinant of this 2× 2 linear system is

det

(
x 1
y 1

)
= x− y 6= 0.

Therefore, there exists a unique solution such that this equation holds. Thus,

Pr
s=(a,b)∈(Z/p)2

[hs(x) = α ∧ hs(y) = β] =
1

p2
.

So, {h(a,b)}a,b∈Z/p is a universal family of hash functions.
This can be generalized to any finite field GF(pn). It is known that for any prime p and any

n ≥ 1, there is a finite field of pn elements. Up to isomorphism such a field is unique. In particular,
for any k ≥ 0, the polynomial X2·3k +X3k + 1 is an irreducible polynomial in Z2[X], and therefore
we have an explicit finite field in the form of

Z2[X]/(X2·3k +X3k + 1).

19

In the definition of this particular family of universal hash functions via affine linear functions
ax+ b, if it is defined over a finite field GF(2n), we can truncate any number of bits from n to make
|T | = 2k, for any 0 ≤ k ≤ n. Whenever in the following we speak of a family of universal hash
functions, unless otherwise stated, we always refer to this family of affine linear functions, and if
necessary, over that particular family of finite fields GF(2n), with n = 2 · 3k.

The power of universal hash functions comes from the fact that on the one hand they behave
more or less like a random function, on the other hand they can be succinctly specified by only 2n
bits.

4 A Randomized Algorithm for MAXCUT

As a taste for randomized algorithms, we discuss the graph problem MAXCUT. Let G = (V,E) be
an undirected graph over n vertices. A cut C of G is a partition of vertices V into disjoint union
V1∪V2. We also identify a cut with the set of edges between V1 and V2, i.e., e ∈ C consists of those
edges with one of its incident vertices in V1 and the other in V2.

Definition 4.1 (MAXCUT). A MAXCUT of a graph G = (V,E) is a cut C such that |C| is
maximized over all cuts of G.

Similar to MAXCUT, MINCUT of G is defined as the minimum |C| over all cuts of G. We
know that MINCUT is in P. This is the max-flow min-cut theorem, essentially equivalent to the
theorems in Section 2.

Project: Explain the relationship between them.

MINCUT can be solved using maximum network flow between all pairs of vertices.
We know that MAXCUT is NP-complete, therefore we do not expect to solve it efficiently.

However, we can look for approximate solutions. To quantify the accuracy of our approximations
we will introduce a new term. We want a polynomial-time algorithm that achieves a cut C such
that

|C|
|C∗|

≥ r

where C∗ is a maximum cut. Such an algorithm is called an r-approximation.

4.1 Deterministic MAXCUT Approximation Algorithm

We can define a greedy algorithm that achieves a 1/2-approximation:
For a graph G = (V,E) with V = {1, . . . , n}, define Ei = {(k, i) ∈ E : k < i}. Initially, let
V1 = V2 = ∅. Then, for each i from 1 to n, add i to either V1 or V2 so that the number of edges in Ei
that are on the cut is maximized, i.e., put i in V1 iff |{k ∈ V2 : (k, i) ∈ Ei}| ≥ |{k ∈ V1 : (k, i) ∈ Ei}|.
We claim that this heuristic achieves 1/2-approximation.

Let C be the cut obtained by the algorithm. The disjoint sets E1, E2, . . . , En partition E. So,
|E| =

∑
iEi. For each i ∈ V , let E′i = Ei ∩ C. Then, C =

⋃
iE
′
i. As sets Ei are disjoint, the sets

E′i are also disjoint. Thus, |C| =
∑

i |E′i|. The main observation is that for each i ∈ V , we have
E′i ≥ Ei/2. We conclude that |C| ≥ |E|/2. As the size of any maximum cut |C∗| ≤ |E|, we get
|C| ≥ |C∗|/2.

20

4.2 Randomized MAXCUT Approximation Algorithm

We present a randomized 1/2-approximation algorithm for MAXCUT. Then we show that it can
be derandomized in polynomial time. This example illustrates the ideas of randomization and
derandomization in a simple setting.

The randomized algorithm is very simple. Assign a monkey at each vertex and have each
monkey throw a dart. If it throws to the left, assign the vertex to V1, and if it throws to the right,
assign it to V2. More formally, given a graph G = (V,E), we assign each vertex independently with
equal probability to either V1 or V2. This will give us a cut C of G, and we will show that the
expected size of C ≥ |C∗|/2.

Consider an edge (i, j) ∈ E. Pr[(i, j) ∈ C] = 1/2. For e ∈ E, define χe to be a random variable
such that χe = 1 if e ∈ C and χe = 0 if e 6∈ C. Then |C| =

∑
e∈E

χe . Thus,

E[|C|] =
∑
e∈E

E[χe] =
∑
e∈E

Pr[e ∈ C] =
|E|
2
≥ 1

2
|C∗|.

The first equality follows from linearity of expectation, E[X + Y] = E[X] + E[Y], for any two
random variables X and Y . This formula holds even if X and Y are not independent.

4.3 Derandomizing MAXCUT Approximation Algorithm Using Universal Hash
Functions

Let G = (V,E) be a graph with V = {0, . . . , n − 1}. Set k so that 2k ≥ n > 2k−1. Choose a and
b at random from GF(2k). For each i ∈ V , treat i as a member of GF[2k] compute ai+ b. Assign
i to either V1 or V2 according to the first bit of ai+ b. We claim that the expected size of the cut
obtained is |E|/2.

Let χ
(a,b)

(i) = the first bit of ai+b. We know that {ai+b}a,b∈GF(2k) is a universal family of hash
functions. Thus, {χ

(a,b)
}a,b∈GF(2k) is a universal family of hash functions. Then, a cut C obtained

by the above randomized algorithm is given by C = {(i, j)|χ
(a,b)

(i) 6= χ
(a,b)

(j)}.
Because {χ

(a,b)
}a,b∈GF(2k) is a universal family of hash functions, Pr[χ

(a,b)
(i) 6= χ

(a,b)
(j)] = 1/2.

Thus, using the analysis from Section 3, we have E[|C|] = |E|/2.
We can derandomize the above algorithm in polynomial time. There are less than 4n2 different

choices for (a, b). To derandomize, we can examine the cuts created by {χ
(a,b)
} for all a, b ∈ GF(2k)

in polynomial time. One of these cuts is guaranteed to be at least |C∗|/2 because E[|C|] ≥ |C∗|/2.
This gives us a deterministic r-approximation algorithm for MAXCUT.

Although this derandomized algorithm does not give a better approximation ratio than the
greedy algorithm, it is a parallel algorithm. For each pair (a, b), the determination of which side of
the cut each vertex is on can be determined separately regardless of the other vertices. Thus, this
can be executed in parallel. Additionally, the cut produced from each pair (a, b) can be determined
in parallel. After all these cuts have been computed, the maximum can be selected. We will say
later that this can be computed in NC.

4.4 Goemans-Williamson Algorithm

Goemans and Williamson gave an approximation algorithm for MAXCUT with error ratio of about
12%. Randomization plays an important role here combined with semidefinite optimization.

21

Typically a subset of [n] can be described by a binary sequence in {0, 1}n. Although this is not
essential, we will find it here more convenient to describe such a subset V1 ⊆ V , which corresponds
to a cut V1 ∪ (V \ V1), by a vector x ∈ {−1, 1}n, by letting xi = −1 iff i ∈ V1. Then the cut size is∑

e={i,j}(xi − xj)2/4. Therefore the MAXCUT problem seeks to maximize

1

4

∑
e={i,j}

(xi − xj)2

subject to the constraint x ∈ {−1, 1}n. This constraint can be expressed as

x2
i = 1, ∀i ∈ V.

Such a problem is called a quadratic programming problem, which, in its generality, is also NP-hard
(which is of course no surprise, since we have just reduced an NP-hard problem MAXCUT to it.)

The next trick is to linearize the problem by introducing a set of new variables yij , 1 ≤ i, j ≤ n,
with the intention that yij = xixj . Under this new set of variables, the objective function becomes

1

4

∑
e={i,j}

(yii + yjj − 2yij)

to be maximized subject to
yii = 1, ∀i ∈ V.

Observe that a “solution” yij need not correspond to any real solution xi. In particular, if
yij = xixj , then the matrix Y = (yij) is symmetric and positive semi-definite, being the product of
X and its transpose XT,

Y = XXT =


x1

x2
...
xn

(x1 x2 · · · xn
)

Not only that, since X is n × 1, Y is of rank 1 (assuming X 6= 0, which is implied by yii = 1).
However, we choose to ignore this rank condition, yet preserve the constraint that Y is symmetric
and positive semi-definite. The reason for this is that there is a polynomial time algorithm, based
on the ellipsoid method, which solves this “semi-definite” programming problem optimally.

What we have done is called a “relaxation” of the original problem. The requirement of Y being
positive semi-definite amounts to a seemingly infinitely many inequalities

vTY v ≥ 0, ∀v ∈ Rn.

These are linear constraints on yij . It is a trick of the “semi-definite” programming algorithm
which can handle these infinitely many inequalities implicitly. We will not dwell further on this,
and simply assume such a polynomial time algorithm is available.

Coming back to MAXCUT, in polynomial time we find a symmetric and positive semi-definite
Y ∗, with y∗ii = 1 which maximizes 1

4

∑
e={i,j}(yii+yjj−2yij) among all Y satisfying these constraints.

Let the maximum value be M∗. Since this is a relaxation of the original problem, M∗ is an upper
bound of the maximum cut size.

22

It is known that a symmetric and positive semi-definite matrix Y ∗ can be expressed as a

product of UUT, where U =
(
u1 u2 · · · un

)T
, where column vectors ui ∈ Rn. Moreover

this decomposition can be found in polynomial time.
Thus, y∗ii = uT

i ui = ||ui||2 = 1 says that each vector ui is a unit vector. Moreover, “formally”
retracing the expansion of

∑
e={i,j}(xi − xj)2 into

∑
e={i,j}(yii + yjj − 2yij), we get

M∗ =
1

4

∑
e={i,j}

||ui − uj ||2.

The next idea of Goemans and Williamson is brilliant. Randomly choose a hyperplane Π in Rn.
This amounts to choosing a unit vector v ∈ Rn, uniformly on the unit sphere, as the normal vector
to Π. (This can be carried out approximately with exponentially small error; we are ignoring issues
of discretizing the process here.) Now partition V according to which side of Π the vector ui falls.
More precisely, assign vertex i to V1 iff the inner product 〈ui, v〉 > 0.

If we express the cut size thus formed as a sum of 0-1 random variables, which indicate whether
edge e = {i, j} belongs to the cut, then the expectation is∑

e={i,j}

Pr[Π separates ui, uj].

To investigate this probability Pr[Π separates ui, uj], we only need to think of it in terms of
the 2-dimensional space spanned by ui and uj . Clearly this probability is θij/π where θij is the
angle between ui and uj . So ∑

e={i,j}

Pr[Π separates ui, uj] =
∑

e={i,j}

θij
π
.

Meanwhile the length ||ui − uj || is clearly 2 sin
θij
2 . Hence∑

e={i,j}

Pr[Π separates ui, uj] =
1

π

∑
e={i,j}

f(θij) · ||ui − uj ||2,

where f(θ) = θ
4 sin2(θ/2)

.

Simple calculus shows that the function f(θ) achieves minimum .69002507... at 2.331122370....
It follows that the expectation of the cut∑

e={i,j}

θij
π
≥ .69002507

π

∑
e={i,j}

||ui − uj ||2 ≈ 0.878 ·M∗.

This is a randomized MAXCUT algorithm that achieves 87.8% approximation ratio. There are
ways to derandomize this algorithm, but we will not discuss this problem any further.

5 Randomized Complexity Classes

Definition 5.1 (BPP). BPP stands for bounded error probabilistic polynomial time. A language L
is in BPP, if there is a boolean predicate D(·, ·), computable in deterministic polynomial time such
that,

23

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 3/4

x 6∈ L =⇒ Pr
y

[D(x, y) = 1] ≤ 1/4,

where |y|, the number of random bits used, is polynomial in length of the input |x|.

Definition 5.2 (RP). RP was the first class defined to capture feasible probabilistic computation,
and simply stands for randomized polynomial time. A language L is in RP, if there is a boolean
predicate D(·, ·), computable in deterministic polynomial time such that,

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y

[D(x, y) = 1] = 0,

where |y|, the number of random bits used, is polynomial in length of the input |x|.

Definition 5.3 (ZPP). A language L is said to be in ZPP if there is a polynomial time computable
function D : {0, 1}∗ × {0, 1}∗ 7→ {0, 1, ?} such that if x ∈ L, for any y, its output D(x, y) ∈ {1, ?},
and if x 6∈ L, for any y, its output D(x, y) ∈ {0, ?}. Moreover, D should have high success
probability:

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y

[D(x, y) = 0] ≥ 1/2,

where |y|, the number of random bits used, is polynomial in length of the input |x|.

Exercise: Prove that ZPP is the class of languages with expected polynomial time algorithms that
never make any errors.

5.1 Amplification of BPP

In this section, we show that the probability of success of a BPP algorithm can be “amplified” to
be as high as exponentially close to 1, with only a polynomial amount of extra work. We use the
Chernoff bound in Theorem 3.4.

Let L be a language accepted by a probabilistic polynomial time TM M , in the following sense:

x ∈ L =⇒ Pr[M(x; r) = 1] ≥ 1

2
+ ε

x 6∈ L =⇒ Pr[M(x; r) = 1] ≤ 1

2
− ε

for random strings r of some polynomial length in n = |x|. Here, ε can be as low as 1/p(n) for some
fixed polynomial p(·). We wish to amplify the success probability of the algorithm. In particular,
we want to get exponentially close to 1, meaning, for any fixed polynomial q(·), we want a machine
M ′ with

x ∈ L =⇒ Pr[M ′(x; r′) = 1] ≥ 1− e−q(n)

x /∈ L =⇒ Pr[M ′(x; r′) = 1] ≤ e−q(n)

24

We require that M ′ run in polynomial time, and hence the length of the random string |r′| used
by M ′ should also be polynomially bounded.

The idea is to run M a large polynomial number of times, and take the majority vote. Given an
input x, M ′ will simply run the machine M on input x some 2m+ 1 times, with m ≥ q(n)/(4ε2),
say, and accept x iff at least m+ 1 runs of M on x accept. In this process we will need independent
and uniformly chosen random r1, r2, · · · , r2m+1, with a total length of the random string |r′| =
O(|r|q(n)/ε2).

Let Xi be the 0-1 random variable indicating the i-th run M(x; ri), p = Pr[M(x; r) = 1], and
S =

∑
i(Xi − p). Suppose x 6∈ L, then p ≤ 1

2 − ε. Apply Theorem 3.4 with ∆ = (2m+ 1)ε, we get

Pr[M ′ accepts x] = Pr[
∑
i

Xi ≥ m+ 1] ≤ Pr[S ≥ (2m+ 1)ε] ≤ e−q(n).

Similarly, if x ∈ L, then p ≥ 1
2 + ε, and

Pr[M ′ rejects x] ≤ e−q(n).

When ε−1 is polynomially bounded, so is m = O(q(n)/ε2). This achieves exponentially small error
probability.
Exercise: What if the threshold is not 1/2?

5.2 Sipser-Lautemann Theorem: BPP ⊆ PH

Let L be a language in BPP. We will show that L ∈ Σp
2. Without loss of generality, there is a

polynomial time computable predicate D(·, ·) such that,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1− 1/m

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1/m

where the number of random bits used m is polynomially bounded in input length n = |x|. For
any input x ∈ {0, 1}n, define its witness set Wx = {y ∈ {0, 1}m|D(x, y) = 1}. So, if x ∈ L then
the witness set Wx is “fat”, whereas, if x 6∈ L, the witness set is “thin”. We will show how to test
whether Wx is fat or thin in Σp

2 and thereby prove that L ∈ Σp
2. Let us first formalize the notion

of fat and thin sets and prove some properties of such sets.
We say that S ⊆ {0, 1}m is fat, if |S|/2m ≥ 1 − 1/m. S is said to be thin, if |S|/2m ≤ 1/m.

In general a subset S may be neither fat nor thin. But, the witness sets we are interested in are
always either fat or thin. For a string u ∈ {0, 1}m, define S⊕u = {s⊕u|s ∈ S}. Here, s⊕u denotes
the m-bit string obtained by bit-wise XOR of s and u: if s = s1s2 . . . sm and u = u1u2 . . . um, then
s⊕ u = s1 ⊕ u1 · · · sm ⊕ um. Think of {0, 1}m as a vector space, S as a subset of this space and u
to be a vector in it. Then, S ⊕ u is nothing but the subset obtained by “shifting” S by u.

We first discuss informally the effect of shifting fat and thin sets. Suppose S is fat. Then, if we
choose a suitable number of shift vectors u1, u2, . . . , ur at random, with high probability, the union
of these shifts will “cover” the entire space:

⋃r
i=1(S ⊕ ui) = {0, 1}m. On the other hand, if S is

a thin, then for any set of vectors u1, u2, . . . , ur, where r < m, the shifts will not cover the space:⋃r
i=1(S⊕ui) 6= {0, 1}m. We will formally prove these claims. Observe that, with these claims, it is

easy to put L in Σp
2: the condition “there is a set of vectors such that Wx shifted by these vectors

covers the entire space” can be expressed as a Σp
2 predicate!

25

Lemma 5.4. Let S ⊆ {0, 1}m.
1. If S is thin, then for any r < m, for any set of r vectors, the shifts cannot cover the entire

space:

Pr
u1,u2,...,ur∈{0,1}m

[
r⋃
i=1

(S ⊕ ui) = {0, 1}m
]

= 0.

2. If S is fat, then with high probability, randomly chosen shifts will cover the entire space:

Pr
u1,u2,...,ur∈{0,1}m

[
r⋃
i=1

(S ⊕ ui) = {0, 1}m
]
≥ 1− 2m

mr

Proof. The first part is obvious. For any vectors u1, u2, . . . , ur, the union of the shifts has cardinality,∣∣∣∣∣
r⋃
i=1

(S ⊕ ui)

∣∣∣∣∣ ≤ r · |S|
Since we assume that r < m and S is thin, |

⋃r
i=1(S ⊕ ui)| < 2m. Thus, the shifts cannot cover the

entire space {0, 1}m which has cardinality 2m.
To prove the second part, we will bound the probability of the negation of the event under

consideration. A set of vectors u1, u2, . . . , ur do not cover the entire space means that some vector
y ∈ {0, 1}m is not covered by these shifts. So,

Pr
u1,u2,...,ur

[
r⋃
i=1

(S ⊕ ui) 6= {0, 1}m
]
≤

∑
y∈{0,1}m

Pr
u1,u2,...,ur

[
y 6∈

r⋃
i=1

(S ⊕ ui)

]

Fix any y ∈ {0, 1}m. By the properties of ⊕ function, we see that y 6∈ S ⊕ u iff y ⊕ u 6∈ S
(we use the fact that for any u, u ⊕ u = 0). Thus, y will not be covered by the r shifts iff
{y ⊕ u1, y ⊕ u2, . . . , y ⊕ ur} ∩ S = ∅. For any u chosen uniformly at random from {0, 1}m, y ⊕ u is
distributed uniformly in {0, 1}m. (We use the fact that the function fy : u 7→ y ⊕ u is 1-1.) So, for
a randomly chosen u, Pr[y ⊕ u 6∈ S] ≤ 1/m, because S is fat. By independence, it follows that

Pr
u1,u2,...,ur

[{y ⊕ u1, y ⊕ u2, . . . , y ⊕ ur} ∩ S = ∅] =
r∏
i=1

Pr
ui

[y ⊕ ui 6∈ S] ≤
(

1

m

)r
.

We conclude that,

Pr
u1,u2,...,ur

[
r⋃
i=1

(S ⊕ ui) 6= {0, 1}m
]
≤

∑
y∈{0,1}m

Pr
u1,u2,...,ur

[
y 6∈

r⋃
i=1

(S ⊕ ui)

]

=
2m

mr
.

Part 2 of the lemma follows from the above bound.
Using Lemma 5.4, we can show that BPP ⊆ Σp

2. For a suitable value of r, the lemma will show
that if S is fat, then for some set of r vectors, the shifts would cover the entire space, and if S is
thin, then for any set of r vectors, the shifts would not cover the entire space. The above property
can be tested in Σp

2. Formal proof is given below.

26

Theorem 5.5 (Sipser–Lautemann). BPP ⊆ Σp
2.

Proof. Let L ∈ BPP. Without loss of generality, there is a polynomial time computable predicate
D(·, ·) such that,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1− 1/m

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1/m

where the number of random bits used m is polynomially bounded in input length n = |x|. For an
input x ∈ {0, 1}n, define its witness set Wx = {y|D(x, y) = 1}. If x ∈ L then the witness set Wx is
fat, whereas, if x 6∈ L, the witness set is thin. Choose r = m/2. Then, from Lemma 5.4, we have

x ∈ L =⇒ Pr
u1,u2,...,ur

[
r⋃
i=1

(Wx ⊕ ui) = {0, 1}m
]
≥ 1− 2m

mr

x 6∈ L =⇒ Pr
u1,u2,...,ur

[
r⋃
i=1

(Wx ⊕ ui) = {0, 1}m
]

= 0.

For large m (m > 4 so that 2m < mm/2), the first probability > 0. So, if x ∈ L, there exist r
vectors such that the shifts cover the entire space, and if x 6∈ L, for any r vectors, the shifts do not
cover the entire space. Observe that, for any u1, u2, . . . , ur,

r⋃
i=1

(Wx ⊕ ui) = {0, 1}m ⇐⇒ ∀y ∈ {0, 1}m [∨ri=1(y ⊕ ui ∈Wx)]

It follows that,

x ∈ L ⇐⇒ ∃u1, u2, . . . , ur∀y ∈ {0, 1}m [∨ri=1(y ⊕ ui ∈Wx)] .

y ⊕ ui ∈Wx simply means that D(x, y ⊕ ui) = 1. So we conclude that,

x ∈ L ⇐⇒ ∃u1, u2, . . . , ur∀y ∈ {0, 1}m [∨ri=1(D(x, y ⊕ ui) = 1)] .

The predicate ∨ri=1(D(x, y⊕ ui) = 1) is testable in polynomial time, as r is polynomial in n and D
is a polynomial time predicate. We conclude that L ∈ Σp

2.
BPP is closed under complementation. So, we have also shown that BPP ∈ Πp

2. We can also
prove this claim directly by exhibiting a Πp

2 predicate. To do that, we first rephrase Lemma 5.4.
Observe that, for any set S ⊆ {0, 1}m and u ∈ {0, 1}m, (S ⊕ u)c = Sc ⊕ u. Hence, for any
u1, u2, . . . , ur, [

r⋃
i=1

(S ⊕ ui) = {0, 1}m
]
⇐⇒

[
r⋂
i=1

(Sc ⊕ ui) = ∅

]
.

Moreover, S is thin iff Sc is fat. So, Lemma 5.4 can be rephrased as follows. Suppose S is fat.
Then Sc is thin. Applying Part 1 of the lemma to Sc, we see that for any set of r < m shift
vectors, u1, u2, . . . , ur, the intersection of the shifts of S is non-empty. Now suppose S is thin.
Then Sc is fat. Applying Part 2 of the lemma to Sc, we see that for randomly chosen r shift vectors
u1, u2, . . . , ur, for reasonably large r, with high probability, the intersection of the shifts of S is
empty. Formally,

27

Lemma 5.6. Let S ⊆ {0, 1}m.
1. If S is fat, then for any r < m, for any set of r vectors, the intersections of the shifts is

non-empty:

Pr
u1,u2,...,ur

[
r⋂
i=1

(S ⊕ ui) 6= ∅

]
= 1.

2. If S is thin, then with high probability, randomly chosen shifts will have an empty intersection:

Pr
u1,u2,...,ur

[
r⋂
i=1

(S ⊕ ui) = ∅

]
≥ 1− 2m

mr

Applying Lemma 5.6 to witness sets, with r = m/2, (assuming m > 4 so that 2m < mm/2),
then

x ∈ L =⇒ ∀u1, u2, . . . , ur

[
r⋂
i=1

(Wx ⊕ ui) 6= ∅

]

x 6∈ L =⇒ ∃u1, u2, . . . , ur

[
r⋂
i=1

(Wx ⊕ ui) = ∅

]

The above property can be expressed as a Πp
2 predicate:

x ∈ L ⇐⇒ ∀u1, u2, . . . , ur∃y [∧ri=1(y ⊕ ui) ∈Wx)]

5.3 Isolation Lemma

The isolation lemma provides a mechanism to approximately compute the size of some set S ⊆
{0, 1}m, such as a BPP witness set. In this section, we state and prove the lemma. In the
subsequent sections, we use the lemma to give an alternative proof that BPP ⊆ Σp

2, and also
discuss approximate counting.

Let S and T be finite sets and H be a universal family of hash functions from S to T . Two
distinct elements x, y ∈ S are said to collide under a hash function h ∈ H, if h(x) = h(y). We
say that a hash function h isolates an element x ∈ S, if no element in S collides with x. One can
imagine that h “likes” x and gives it a separate seat in T to sit alone comfortably! A set of hash
functions {h1, h2, . . . , hr} is said to isolate an element x ∈ S, if one of these function hi isolates x.
The set of functions is said to isolate all of S, if for every element x ∈ S, there is some function hi
in the set that isolates x.

Suppose we choose r hash functions h1, h2, . . . , hr, uniformly and independently at random from
H. What is the probability that the set of these functions isolates all of S? The answer depends
on the size of S compared to the size of T and the value of r. Intuitively, if S is sufficiently smaller
than T and r is large enough, with high probability, the randomly chosen set of functions will
isolate all of S. On the other hand, if S is large compared to T and r is small enough, then there
is not enough space in T to give “separate seats” for all the elements in S. For suitable choices of
|T | and r, we can make the probability of isolation zero.

Lemma 5.7 (Isolation Lemma). Let H be a universal family of hash functions from S to T . Let
h1, h2, . . . , hr be chosen uniformly and independently at random from H, where r > 1.

28

1. If |S| ≥ r|T |, then
Pr

h1,h2,...,hr
[{h1, h2, . . . , hr} isolates all of S] = 0.

2. Suppose |S|r+1 ≤ |T |r. Then,

Pr
h1,h2,...,hr

[{h1, h2, . . . , hr} isolates all of S] > 1− |S|
r+1

|T |r
.

(In the Lemma, if r = 1 then we require |S| > |T |, the statement still holds.)

Proof. The first part of lemma is quite obvious. Any hash function h ∈ H can isolate at most
|T | − 1 elements in S (it can assign “separate seats” for some |T | − 1 elements in S and then map
all the other elements to the last “seat” in T). So, any set of r hash functions can together isolate
at most r(|T | − 1) elements. As |S| ≥ r|T |, no set of r hash functions can isolate all of S.

We next prove the second part of the lemma. Fix any distinct elements x, y ∈ S. From the
properties of universal family of hash functions, the probability that x and y collide under h is
1/|T |. So, for any element x ∈ S,

Pr
h∈H

[h does not isolate x] ≤
∑

y∈S−{x}

Pr
h∈H

[x and y collide under h]

<
|S|
|T |

It follows that, for any x in S, if we choose h1, h2, . . . , hr uniformly and independently at random,

Pr
h1,h2,...,hr∈H

[none of the hi isolates x] <

(
|S|
|T |

)r
.

Finally, the probability that randomly chosen r hash functions do not isolate all of S can be bounded
by summing up over all possible elements in S:

Pr
h1,h2,...,hr∈H

[{h1, h2, . . . , hr} does not isolates all of S]

≤
∑
x∈S

Pr
h1,h2,...,hr∈H

[none of h1, h2, . . . , hr isolates x]

< |S| ×
(
|S|
|T |

)r
We conclude that

Pr
h1,h2,...,hr∈H

[{h1, h2, . . . , hr} isolates all of S] > 1− |S|
r+1

|T |r

29

5.4 BPP ⊆ Σp
2 - Another Proof Using the Isolation Lemma

This section shows how to use the isolation lemma to put BPP in Σp
2. We first present the proof

idea informally. Let L be a language in BPP, via a randomized algorithm that uses m random
bits, where m is polynomial in the input length. We assume that the algorithm has been suitably
amplified. We will fix parameters r and size of the target set T suitably in Lemma 5.7. For any
input x, let Wx ⊆ {0, 1}m be the set of witness strings on which the algorithm accepts the input
x. The parameters will be chosen appropriately, so that if x ∈ L, Wx will be large enough that no
set of r hash functions h1, h2, . . . , hr will isolate all of Wx; on the other hand, if x 6∈ L, Wx will be
small enough so that, with high probability, randomly chosen r hash functions h1, h2, . . . , hr will
isolate all of Wx, and in particular there will exist some set of r hash functions that isolates all of
Wx. Hence, x 6∈ L iff there exist a set of r hash functions {h1, h2, . . . , hr} that isolates all of Wx.
The later condition can be expressed as a Σp

2 predicate, thereby placing L in Πp
2. A formal proof

follows.

Theorem 5.8. BPP ⊆ Σp
2 ∩Πp

2.

Proof. Let L ∈ BPP. We prove that L ∈ Πp
2. As BPP is closed under complementation, the lemma

follows. Without loss of generality, there is a deterministic polynomial time boolean predicate
D(·, ·) such that for any input x ∈ {0, 1}n,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1

2

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1

4m

where the number of random bits used m is polynomial in the input length n. Wolog we can assume
m is a power of 2. Fix r = m, and let T be a set of size 2m/(2m). (As it is usually the case in such
proofs, the above choices of parameters such as the extent of amplification, value of r and size of
|T | are not crucial. We can fix them in many ways to make the proof work! One such setting is
given above). Let H be a universal family of hash functions from {0, 1}m to T . For any input x,
let Wx = {y|D(x, y) = 1}. Suppose x ∈ L. Then,

|Wx| ≥ 2m−1 = r · |T |.

So, Lemma 5.7 shows that no set of r hash functions {h1, h2, . . . , hr} from H isolates all of Wx. On
the other hand, suppose x 6∈ L. Then, from our choice of parameters,

|Wx|r+1

|T |r
≤ 1

4m
.

(In more detail: |Wx| ≤ 1
4m · 2

m, and so |Wx|
(
|Wx|
|T |

)r=m
≤ 1

4m2m(1/2)m = 1
4m .)

Again, Lemma 5.7 implies that if we choose h1, h2, . . . , hr uniformly and independently at
random from H,

Pr
h1,h2,...,hr

[{h1, h2, . . . , hr} isolates Wx] ≥ 1− 1

4m
.

30

In particular, it follows that,

x ∈ L =⇒ ∀h1, h2, . . . , hr[{h1, h2, . . . , hr} does not isolate Wx]

x 6∈ L =⇒ ∃h1, h2, . . . , hr[{h1, h2, . . . , hr} isolates Wx]

So, we have,
x 6∈ L ⇐⇒ ∃h1, h2, . . . , hr[{h1, h2, . . . , hr} isolates Wx].

Given a particular set of {h1, h2, . . . , hr}, the predicate “{h1, h2, . . . , hr} isolates Wx” can be ex-
pressed as

(∀y ∈Wx)(∃1 ≤ i ≤ r)(∀y′ ∈Wx − {y})[hi(y) 6= hi(y
′)].

At first glance, it seems we need to write a Πp
3 predicate to express the above condition. But, we

can do better and express it as a coNP predicate, because ∃1 ≤ i ≤ r is a bounded quantifier
and can be eliminated. This is a general principle in logic, but to be totally concrete, we have
{h1, h2, . . . , hr} isolates Wx if and only if

(∀y ∈Wx){(∀y1 ∈Wx − {y})[h1(y) 6= h1(y1)] ∨ . . . ∨ (∀yr ∈Wx − {y})[hr(y) 6= hr(yr)]}

which is equivalent to

(∀y ∈Wx)(∀y1, . . . , yr ∈Wx − {y})[(h1(y) 6= h1(y1)) ∨ · · · ∨ (hr(y) 6= hr(yr)].

We conclude that, x 6∈ L if and only if

(∃h1, . . . , hr)(∀y ∈Wx)(∀y1, . . . , yr ∈Wx − {y})
[(h1(y) 6= h1(y1)) ∨ (h2(y) 6= h2(y2)) ∨ · · · ∨ (hr(y) 6= hr(yr)].

We have shown that L ∈ Πp
2.

5.4.1 Approximate Counting Using Isolation Lemma

Using Sipser’s Isolation Lemma, Stockmeyer showed how to do approximate counting in PΣp
2 . In

fact, his technique shows approximate counting at the level of RPNP already. Let us be more
precise.

Definition 5.9 (#P). #P is a function class. A function f : {0, 1}∗ → N is in #P, iff there is a
p-time NTM M , such that f(x) = # of accepting paths of M(x).

So typically any NP language has a “counting” version; e.g., #SAT(ϕ) is the number of satisfying
assignments to the formula ϕ; #HAM(G) is the number of Hamiltonian circuits in G. One can
easily develop a notion of polynomial time reduction for these functions. It is no surprise that both
functions #SAT and #HAM are #P-complete under this reduction. This follows from the fact
that Cook’s reduction is parsimonious, i.e., they preserve the number of solutions. (For instance, in
Cook’s reduction from a generic NP language to SAT, every accepting computation is in a unique
way associated with a satisfying assignment.)

Less obvious, yet also #P-complete, is the permanent function: For any n by n matrix A = (aij),

per(A) =
∑
σ∈Sn

a1,σ1a2,σ2 . . . an,σn,

31

where the sum is over all permutations σ : i 7→ σi. In other words, the permanent function is
defined much as the determinant function, except there are no more minus signs. For a 0-1 matrix,
per(A) counts the number of perfect matchings of the bipartite graph with matrix A.

Valiant showed that the permanent function is also #P-complete (even though the decision
problem of graph matching is in P.)

Definition 5.10 (PP). PP stands for probabilistic polynomial time. A language L is in PP, if
there is a boolean predicate D(·, ·), computable in deterministic polynomial time such that,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] < 1/2,

where the number of random bits used, m, is polynomial in length of the input |x|.

Note that, unlike BPP and RP, every polynomial time NTM defines a PP language, whereas
not every polynomial time NTM defines a language in BPP or RP. BPP, RP and ZPP are “promise
classes” in the sense that a polynomial time predicate (or equivalently a polynomial time NTM)
defines a language in BPP, RP or ZPP only if it satisfies some global conditions. Moreover, these
conditions are over all input length n, and not decidable in general. Therefore we do not have an
enumeration of these classes simply by an enumeration of their acceptors. This implies that we
do not have a universal language, nor a complete language by this process. It is an open problem
whether such complete languages exist. (Of course if BPP = P, then they indeed exist.) For PP,
one can easily enumerate the class, and therefore complete languages exist. For example, the set
of Boolean formulae on n variables having at least 2n−1 satisfying assignments is such a language.

It is also easy to see that

Theorem 5.11.
PPP = P#P .

Next we discuss approximate counting. Given a formula ϕ over n variables, the goal is to
approximately count the number of satisfying truth assignments of ϕ. Let S = {σ|ϕ(σ) = 1}
be the set of all such assignments. We want to compute the first c · log n bits of |S|, where c is
any constant. This can be done by a polynomial time algorithm using a Σp

2 oracle, as shown by
Stockmeyer. In fact, his technique can accomplish the same task with just an NP oracle, if we are
ready to settle for a randomized polynomial time algorithm.

Our main tool is the isolation lemma, Lemma 5.7. We first rephrase the lemma in a more
suitable format:

Lemma 5.12. Let S ⊆ {0, 1}n, and let H be a family of 2-universal hash functions from {0, 1}n
to {0, 1}k. For all m ≥ k, choose h1, h2, . . . , hm independently at random from H.

1. if |S| ≤ 2k−1 then

Prh1,...,hm [∀x ∈ S some hi isolates x] ≥ 1− 1

2m−k+1

2. if |S| > m2k then
Prh1,...,hm [∀x ∈ S some hi isolates x] = 0.

32

Note that in case 1, for r = m, |S|r+1 = |S|m+1 ≤ 2mk+k−m−1 < 2mk = |T |m = |T |r, and so
|S|r+1

|T |r ≤
2mk+k−m−1

2mk = 1
2m−k+1 .

The idea is to try all values of k from 1 to n, and attempt to find a k such that |S| ≈ 2k. (We may
assume our S 6= ∅; at any rate with one query to SAT we can verify this.) For any ∅ 6= S ⊆ {0, 1}n,
there is some kS , where 1 ≤ kS ≤ n, such that 2kS−1 ≤ |S| ≤ 2kS . If we take every k in the range
1 ≤ k ≤ n + 1, and randomly pick m = 2n hash functions h1, . . . , hm : {0, 1}n → {0, 1}k, then for
each k ≥ kS + 1, we would get isolation with probability ≥ 1 − 1

2n . For each k we ask the SAT
oracle, whether the chosen set of h1, . . . , hm has the property that “∀x ∈ S, one of hi isolates x”.
Since there are only m = 2n hash functions this is a SAT query. We pick the least k0 such that the
oracle confirms isolation. Then k0 ≤ kS + 1, with probability ≥ 1− 1

2n . (We abort if for no k the
chosen hash functions achieve isolation; this happens with exponentially small probability.) Also
by the second part of Lemma 5.12, we know definitely |S| ≤ 2n2k0 . Denote by U = 2n2k0 , then
with high probability,

U

8n
≤ |S| ≤ U.

(U8n = 2k0−2 ≤ 2kS−1 ≤ |S|.)
This give us a randomized polynomial time algorithm using a SAT oracle to approximate |S|

within O(n). We’d like to do better. To do this, we use a little trick to amplify the accuracy.
First we build a set S′ such that

S′ = S × S × · · · × S︸ ︷︷ ︸
m times

⊆ {0, 1}nm

where m is polynomial in n. Then we run the previous algorithm on the set S′ to get an estimate
U ′ for S′ such that

U ′

8nm
≤ |S′| ≤ U ′.

Now we set e(S) = (U ′)1/m. It follows that

e(S)

(8nm)1/m
≤ |S| ≤ e(S).

By choosing m to be a sufficiently large polynomial in n, we can get

e(S) ·
(

1− 1

nc

)
≤ |S| ≤ e(S),

for any constant c.

5.5 Unique Satisfiability: Valiant–Vazirani Theorem

Assuming NP 6= P, SAT cannot be solved in polynomial time. One may suspect that it is difficult
to design a polynomial time algorithm for SAT because the input formula may have myriad truth
assignments and it is hard to get hands on one of them. This suspicion leads to the following
interesting problem, called USAT (Unique SAT). We are given a formula ϕ which is guaranteed
to be either unsatisfiable or has exactly one satisfying truth assignment. Is USAT solvable in
polynomial time? Here we show some evidence that it is unlikely. We prove that if USAT is
solvable in polynomial time, then NP = RP.

33

Theorem 5.13. Suppose there is a polynomial time algorithm A, which for a given boolean formula
ϕ, answers

A(ϕ) =


No if ϕ has no satisfying assignments;
Yes if ϕ has exactly one satisfying assignment;

Yes/No if ϕ has more than one satisfying assignments.

Then NP = RP.

Proof. Note that the algorithm A may output anything (YES or NO) if it is given a formula with
more than one satisfying truth assignment. Assuming A runs in polynomial time, we design a RP
algorithm for SAT. The idea is to use some coin tosses and convert ϕ into a more constrained
formula ϕ′, so that if ϕ is unsatisfiable, ϕ′ will also be unsatisfiable. And if ϕ is satisfiable, with
non-trivial probability, exactly one of the satisfying assignments of ϕ will satisfy ϕ′. Once we are
successful in obtaining such a ϕ′, we can apply the algorithm A to it.

To start with assume that ϕ is satisfiable and let #ϕ be the number of satisfying truth as-
signments of ϕ. In order to convert ϕ to ϕ′, the algorithm needs an estimate for #ϕ. It is
computationally hard to estimate #ϕ. So, we simply pick a k with 1 ≤ k ≤ n at random! The
hope is that 2k−1 ≤ #ϕ ≤ 2k. The probability that k satisfies the above condition is at least 1/n,
as long as #ϕ 6= 0. Assume that we are lucky and k indeed satisfies the above condition. Next
we choose a set T of size 2k+1. If 2k−1 ≤ #ϕ ≤ 2k, then 2(#ϕ) ≤ |T | ≤ 4(#ϕ), meaning |T | is
neither too big nor too small compared to #ϕ. We then setup a universal family of hash functions
H from the set of all assignments {0, 1}n to T , and we randomly pick a hash function h from H
and an element α from T . We will show that, with non-trivial probability, there will be a unique
satisfying truth assignment x such that h(x) = α. So, we consider the question: “Is there a truth
assignment t such that ϕ(t) = 1 and h(t) = α”. By Cook’s theorem this can be converted to a SAT
question ϕ′, and it will have a unique satisfying assignment iff there is a unique t satisfying ϕ, and
is mapped to α by h. If we are lucky in choosing the “correct” k, h and α, ϕ′ will have exactly one
satisfying truth assignment.
Algorithm for SAT:
Input: A formula ϕ over n variables.

1. Choose a number 1 ≤ k ≤ n uniformly at random.
2. Let T = {0, 1}k+1, let H be a universal family of hash functions from {0, 1}n to T .
3. Choose h ∈ H and α ∈ T uniformly at random.
4. Let ϕ′ be the Boolean formula from Cook’s theorem, encoding the NP predicate “(∃t ∈
{0, 1}n)[(ϕ(t) = 1) ∧ (h(t) = α)]”.

5. Run the procedure A for USAT on ϕ′. Accept ϕ iff A(ϕ′) = accept and the truth assignment
extracted using A via self-reducibility indeed satisfies ϕ.

It is clear that, if ϕ is unsatisfiable then our algorithm will reject it with probability one. So, assume
that ϕ is satisfiable. Then over the random choices of k, h and α, we show that our algorithm
accepts ϕ with probability Ω(1/n). This probability can then be easily amplified, making it an RP
algorithm.

First of all suppose 2k−1 ≤ #ϕ ≤ 2k. The probability that k satisfies the above condition is
at least 1/n. Under this assumption, we have 2(#ϕ) ≤ |T | ≤ 4(#ϕ). We say that two satisfying
distinct truth assignments a and b (with a 6= b) collide under h, if h(a) = h(b). Over the random
choices h, let C be the random variable that counts the number of collisions. We first show that
the expected number of collisions E [C] is small. For any fixed a 6= b, the probability that a and b

34

collide is 1/|T | (this follows from the definition of universal family of hash functions). For any pair
of satisfying truth assignments a 6= b, let Xa,b be a 0-1 random variable such that Xa,b = 1, if a
and b collide under h and Xa,b = 0, if they don’t collide. Its expectation is E [Xa,b] = 1/|T |. The
number of collisions C is the sum of over all Xa,b. So, expectation of C is

E [C] =
∑
(a,b)

E [Xa,b] .

The summation above ranges over all distinct pairs of satisfying truth assignments. The number
of such pairs is

(
#ϕ
2

)
. Hence,

E [C] =

(
#ϕ

2

)
1

|T |
≤ #ϕ

4
.

Using Markov’s inequality, we have

Pr

[
C ≥ #ϕ

3

]
≤ E[C]

#ϕ/3
≤ 3

4
.

So, with probability at least 1/4, the number of collisions C is at most #ϕ/3. In general, if there
are c collisions, at most 2c satisfying truth assignments can participate in collisions. (This can be
shown easily by the inductive argument: Take any such x and pick any y 6= x such that h(x) = h(y).
Now remove x and y. There can be at most c − 1 collisions left among the remaining points, and
thus at most 2c − 2 points.) Thus, in our case, at most 2/3 · #ϕ satisfying truth assignments
can participate in some collision. It follows that at least #ϕ/3 satisfying truth assignments are
mapped to a unique image. Call these ≥ #ϕ/3 images in T good: i.e., there is a unique satisfying
assignment a such that h(a) = t. Recall that |T | ≤ 4(#ϕ). So, at least 1/12 fraction of elements
in T are good. Therefore, with probability at least 1/12, the randomly picked element α is good.

We can now lower bound the probability that ϕ′ has a unique satisfying truth assignment.
Assume that ϕ is satisfiable. Then, with probability 1/n, the number k chosen by the algorithm
satisfies 2k−1 ≤ #ϕ ≤ 2k. Assuming k satisfies the above condition, with probability at least 1/4,
the number of collision C is at most #ϕ/3. Assuming C ≤ #ϕ/3, with probability at least 1/12,
the randomly chosen α is good. If α is good, then ϕ′ has exactly one satisfying truth assignment.
Putting together,

Pr
k,h,α

[ϕ′ has a unique satisfying truth assignment] ≥ 1

n
· 1

4
· 1

12
=

1

48n

As we noted already, if ϕ is unsatisfiable, our algorithm has zero probability of accepting it. If ϕ
is satisfiable, our algorithm accepts it with probability at least 1/(48n). So our algorithm is an
RP algorithm with success probability 1/(48n). We can amplify this success probability, as usual,
by running the algorithm multiple times. For example, by running the algorithm 96n times, the
success probability can be amplified to 1/2.

6 Random Walks

Suppose G = (V,E) is a connected graph of n vertices. We would like to take a random walk on
G starting from some arbitrary vertex. How long do we need to walk before we can expect to visit
every vertex?

35

Of course this question depends on what graph, and where we start. The surprising answer is
that, for every connected graph and for every starting vertex, after about O(n3) steps we can be
quite sure that the random walk has visited every vertex.

By a random walk, we mean the following random process. Repeat the following step: At any
vertex, randomly and uniformly select a neighbor and move there.

Definition 6.1. A random walk on a graph G = (V,E), starting at s, is a random sequence
v0 = s, v1, v2, . . . , vk, . . . , of vertices such that for all k ≥ 0,

Pr[vk+1 = w | vk = u] =

{ 1
deg(u) if {u,w} ∈ E

0 otherwise

As an example, consider a graph consisting of an n/2-clique (i.e., n/2 vertices with all possible
edges present) connected at one of its vertices v to one end of an n/2-chain. Now start at a vertex
s in the clique, and let t be at the opposite end of the chain from v. Note that, even when the
walk reaches v, the probability that the walk escapes the clique and enters the chain is only 2/n.
Even if the walk does escape the clique and move a few vertices toward t, it is much more likely to
fall back into the clique than it is to reach t. Incredibly, even in this pathological case, the random
walk is likely to visit every vertex in no more than O(n3) steps.

Exercise: What is the expected number of steps for a random walk to reach t from s? What
about for an n-chain with s and t at opposite ends?

6.1 Random Commute

Definition 6.2. A commute from i to j is a path that starts at i and ends the first time it returns
to i after having visited j. A random commute is a random walk that forms a commute.

Consider the example of a chain of 9 vertices, labeled 1 to 9 from left to right.
A commute from 2 to 3 on this chain might look like 2, 1, 2, 1, 2, 3, 4, 5, 4, 5, 4, 3, 2. Note that it

may visit i multiple times before encountering j, and then j multiple times before its return to i.

Definition 6.3. For all i, j, u, v, with {u, v} ∈ E, let cijuv be a random variable that is the number
of times a random commute from i to j crosses the edge (u, v) (in the direction from u to v). Let

θijuv = E(cijuv),

be the expectation of cijuv.

Example: For the chain graph of 9 nodes, θ2323 = 1. This clear because starting at 2 we can ignore
all steps before it crosses (2, 3) (which happens with probability one eventually) in the direction
from 2 to 3. And then we can ignore all successive steps until it moves from 3 to 2 (which also
happens with probability one eventually). At that point the random commute ends.

Also θ2343 = 1. This can be seen as follows: Wait at 3 until the random walk reaches 3 for the
first time (which happens with probability one eventually). Then Pr[(3, 4) is crossed] = 1/2, and if
this happens, then eventually random walk crosses (4, 3) back to 3. If the random walk goes back
from 3 to 2 instead, we wait for it to appear again at 3.

So this process is probabilistically exactly the following process: Keep tossing a fair coin, count
how many consecutive Heads appear before the first Tail appears. Thus θ2343 = 1, Since this is
θ2343 = 1

2 · 0 + 1
2 · [1 + θ2343].

36

It will be shown that, surprisingly θ2389 = 1 also.
We present a theorem due to Göbel and Jagers. First, a simple lemma.

Lemma 6.4. For any vertices i, j, and u, θijuv is the same for all neighbors v of u.

Imagine extending the random commute into an infinite process. Let y0, y1, y2, . . . be an infinite
sequence of random vertices, where we let the walk stay at i after the random commute has ended
at i. More precisely, we define a y0, y1, y2, . . . where a (unique) prefix y0, y1, y2, . . . , ym is a random
commute from i to j, and for which yk = i for all k > m.

Define

Xkuv =

{
1 if yk = u and yk+1 = v
0 otherwise

This is like a sentry sitting at the kth step and records whether it is the edge (u, v). Clearly

cijuv =
∞∑
k=0

Xkuv.

Then

θijuv = E[cijuv]

=
∞∑
k=0

Pr[Xkuv = 1]

=
∞∑
k=0

Pr[yk = u ∧ yk+1 = v]

=

∞∑
k=0

Pr[yk = u]Pr[yk+1 = v | yk = u]

=

∞∑
k=0

Pr[yk = u]
1

deg(u)

This last quantity is independent of v, i.e., independent of which neighbor of u it is.
The next lemma is the key step.

Lemma 6.5. For any vertices i, j, u, and v,

θijuv = θijvu.

We define a 1-1 correspondence of the set Cij of all commutes from i to j to itself Cij , such
that all corresponding pairs have the same value for cijuv and cijvu respectively, and with the same
probability weight.

For any commute C from i to j, We define CR as in the figure. We observe that
1. CR is a commute from i to j.
2. (CR)R = C.
3. The probability weight of CR as a random commute is the same as that of C. This is because

the weight is just the product of all reciprocals of the degrees of the vertices appearing on
this circular path.

37

4. LetN(C, u, v) be the number of times C crosses the edge (u, v). ThenN(C, u, v) = N(CR, v, u).
Hence, let Rij be a random commute,

θijuv =
∑
C

Pr[Rij = C]N(C, u, v)

=
∑
C

Pr[Rij = CR]N(CR, v, u)

=
∑
CR

Pr[Rij = CR]N(CR, v, u)

= θijvu.

Theorem 6.6. For any connected, undirected graph G = (V,E), and for any two vertices i, j ∈ V ,
θijuv is independent of u and v (i.e., it is the same for all edges {u, v} and each of the two directions
could be crossed).

Proof. Let {u, v} and {u′, v′} be two edges, and let P = (u, v, w, . . . , u′, v′) be a path containing
both. Such a path exists because G is connected. As {u, v} and {u′, v′} are listed as unordered
pairs as edges, we may assume such a path has this form, i.e., first u then v, and finally u′ and
then v′. Applying the lemmas above to P alternately, we have the following:

θijuv = θijvu = θijvw = θijwv = . . . = θiju′v′ .

The following theorem is due to Aleliunas, Karp, Lipton, Lovász, and Rackoff.

Theorem 6.7. Let G = (V,E) be a connected, undirected graph with |V | = n and |E| = m. For
any starting vertex, the expected number of steps that a random walk needs in order to visit every
vertex in V is at most 4nm.

Proof. Consider an infix traversal of any spanning tree of G. (Such a spanning tree exists because
G is connected.) We show that the expected time to visit the vertices of G in the order given by
this traversal is no more than 4nm.

Let Tij be the expected number of steps for a random walk to get from vertex i to vertex j,
where i and j are adjacent in the spanning tree. Certainly Tij ≤ the expected number of steps in
a random commute from i to j, which is equal to the expected total number of crossings (in both
directions) of all edges in a random commute from i to j. That is,

Tij ≤
∑

(u,v)∈V×V,{u,v}∈E

θijuv

≤
∑

(u,v)∈V×V,{u,v}∈E

θijij

≤
∑

(u,v)∈V×V,{u,v}∈E

1

≤ 2m.

Note that θijij ≤ 1 because it is impossible for a random commute to traverse the edge (i, j) twice!
(If it is about to traverse the edge (i, j) the second time, it should have ended.)

38

There are n − 1 edges in a spanning tree, and each is traversed twice in an infix walk, so the
expected number of steps in the entire walk is at most 2(n− 1)2m < 4nm.

Now we can use this random walk idea to decide in probabilistic logarithmic space whether a
given undirected graph is connected or not.

Exercise: Carry out the proof details of the above claim.

7 Expanders

Let G = (V,E) be a d-regular graph on n vertices. Let p ∈ Rn≥0 be a probability distribution on
V . We assume each v ∈ V has a self-loop. A random walk repeatedly takes a neighbor chosen
uniformly at random (u.a.r.) and moves to that neighbor (it also stays put with probability 1/d).
Let A be the random-walk matrix, which is 1/d of the symmetric adjacency matrix, i.e., Ai,j = 1/d
if {i, j} is an edge, and 0 otherwise. If we start with the distribution p and take one step of the
random walk, then the probability distribution is Ap.

Definition 7.1. Let 1 = 1
n(1, 1, . . . , 1)T ∈ Rn be the uniform distribution on V . Denote by 1⊥ =

{v ∈ Rn | 〈v,1〉 = 0} be the set of vectors orthogonal to 1, where 〈u, v〉 =
∑n

i=1 uivi. Then

λ(G) = λ(A) = max
06=p∈1⊥

||Ap||
||p||

,

where || · || is the 2-norm ||p|| =
√∑n

i=1 |pi|2.

As ||cp|| = |c| · ||p|| for any scalar c, the definition is the same if we restrict to ||p|| = 1, or to
||p||1 =

∑n
i=1 |pi| = 1.

This quantity λ(G) is called the second largest eigenvalue (of the random-walk matrix) of the
graph G. As A is real symmetric, it has n eigenvalues counting multiplicity: λ1, λ2, . . . , λn, with n
orthogonal eigenvectors v1, v2, . . . , vn. We may assume they are ordered such that

|λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

Then λ(G) = |λ2|. It can be shown that the maximum eigenvalue in absolute value is |λ1| = 1,
with a corresponding eigenvector 1. G is bipartite iff λ2 = −1.
Exercise: Prove that For any graph G, he maximum |λ1| = 1, with a corresponding eigenvector
1. And G is bipartite iff λ2 = −1.

The gap 1 − λ(G) controls how fast a random walk mixes, or converges to the uniform distri-
bution.

Lemma 7.2. For any distribution p on V ,

||Ak − 1|| ≤ λ(G)k.

Proof. For any v ∈ 1⊥, ||Av|| ≤ λ(G)||v||. Note that 1⊥ is an invariant subspace of A (spanned by
the subset of the orthogonal basis {v2, . . . , vn}.) This is because 〈Av,1〉 = (Av)T1 = vTA1 = vT1 =
0, where we used the fact that A is symmetric and A1 = 1 since A is a random walk matrix (so
the row sum is 1). As the eigenvalues of Ak are just λk1, λ

k
2, . . . , λ

k
n, clearly λ(Ak) = |λ2|k = λ(A)k.

39

Write any distribution p as a decomposition along 1 and orthogonal to 1,

p = α1 + p′.

Being a distribution, the sum of the coordinates
∑n

i=1 pi = 1. On the RHS, it is α+
∑n

i=1 p
′
i = α,

because
∑n

i=1 p
′
i = 0. So we have p = 1 + p′. then Akp = 1 +Akp′, and

||Akp− 1|| ≤ λ(A)k||p′||.

Note that p′ is an orthogonal projection of p, we have ||p||2 = ||1||2 + ||p′||2 = 1
n + ||p′||2 > ||p′||2.

Also ||p||2 =
∑n

i=1 |pi|2 ≤ (
∑n

i=1 |pi|)2 = ||p||21 = 1, we get ||p′|| ≤ 1. Hence

||Akp− 1|| ≤ λ(G)k.

Lemma 7.3. If G is a d-regular connected graph with a self-loop at every vertex, then λ(G) ≤
1−Θ(1

n2).

Proof. Take ε = 1
6n2 . We want to prove that for any unit vector u ∈ 1⊥, 1− ||Au||2 ≥ ε. If so, then

||Au|| ≤ 1−ε/2, and the lemma is proved. To wit: if ||Au|| > 1−ε/2, then ||Au||2 > (1−ε/2)2 > 1−ε.
Write v = Au. As ||u|| = 1, we have 1− ||Au||2 = ||u||2 − ||v||2. Consider

n∑
i,j=1

Aij(ui − vj)2 =
n∑

i,j=1

Aij(u
2
i − 2uivj + v2

j) =
∑
i

u2
i − 2

∑
i,j

Aijuivj +
∑
j

v2
j .

The sum
∑

i,j Aijuivj is 〈Au, v〉 = ||v||2. Hence

n∑
i,j=1

Aij(ui − vj)2 = ||u||2 − ||v||2.

So we want to show this sum is ≥ ε.
Since u is a unit vector with all entries sum to 0, some entries are positive and some are negative,

with at least one |uk| ≥ 1√
n

. (Otherwise ||u||2 =
∑

i u
2
i < 1.) So there is a pair of indices i and j

such that ui − uj ≥ 1√
n

. Since G is connected, there is a path from i to j. Suppose the path has

length D, and we rename the vertices so that the path is 1, 2, . . . , D+1 (with i = 1 and j = D+1).
Consider the telescoping sum

1√
n
≤ u1 − uD+1 = (u1 − v1) + (v1 − u2) + (u2 − v2) + (v2 − u3) + . . .+ (vD − uD+1).

(We first telescope with u1, u2, . . . , uD, then insert vi between ui − ui+1.) This sum has 2D terms.
So

1√
n
≤ |u1 − v1|+ |v1 − u2|+ |u2 − v2|+ |v2 − u3|+ . . . |vD − uD+1| (7.1)

≤
√
|u1 − v1|2 + |v1 − u2|2 + |u2 − v2|2 + |v2 − u3|2 + . . . |vD − uD+1|2

√
2D (7.2)

40

Since the graph has self-loops, and every pair {i, i + 1} (1 ≤ i ≤ D) is an edge, in the sum∑n
i,j=1Aij(ui − vj)2 every term of the last sum in (7.2) appears with coefficient Aij = 1/d. All

other terms in
∑n

i,j=1Aij(ui − vj)2 are nonnegative, so

n∑
i,j=1

Aij(ui − vj)2 ≥ 1

2Ddn
.

This already gives an inverse polynomial Ω(1/n3) gap.
For d-regular graphs without parallel edges, one can do better to get an Ω(1/n2) gap. We

observe that D ≤ 3n
d , which completes the proof. To see that D ≤ 3n

d , consider any pair (i, j)
achieving the longest distance among any two vertices (called the diameter of G.) Thus we have
a path i = i0, i1, . . . , iD = j, which is the shortest path between them, of length D. Each of
i0, i3, i6, . . . (there are at least D/3 of them) has d−3 neighbors that form pairwise disjoint subsets
among the vertices not on the path: [n] − {i0, i1, . . . , iD}, (d − 3 is counting the self-loop and the
two neighbors; the end point(s) have d− 2 such neighbors). So

D

3
(d− 3) ≤ n−D.

This gives D ≤ 3n
d .

7.1 Algebraic and Combinatorial Notions of Expanders

Definition 7.4. An (n, d, λ)-expander is a d-regular graph G = (V,E) on n vertices, such that
λ(G) ≤ λ.

We typically look for a graph family {Gn}, for some fixed d and fixed λ < 1, with n→∞.

Definition 7.5. An n-vertex d-regular graph G = (V,E) is called an (n, d, ρ)-(combinatorial-edge)-
expander if for every subset S ⊂ V of |S| ≤ n/2,

|E(S, S)| ≥ ρd|S|,

where E(S, T) = E ∩ (S×T) is the set of edges of the form (s, t) for s ∈ S and t ∈ T , and S is the
complement of S.

Using the probabilistic method, one can prove the existence of expanders.
Exercise: Pick d permutations σ1, . . . , σd from Sn u.a.r. Define a graph on [n] such that (i, j) is
an edge iff some σk maps i to j or j to i. Prove that, for constant d ≥ 2 and some constant ρ > 0,
this defines a 2d-regular expander graph family as n→∞, with high probability.

Theorem 7.6. If G is an (n, d, λ)-expander, then it is an (n, d, ρ)-(combinatorial-edge)-expander,
with ρ = (1− λ)/2.

If G is an (n, d, ρ)-(combinatorial-edge)-expander, then its second largest eigenvalue (without

taking absolute value) is at most 1− ρ2

2 . If furthermore G has all self-loops, then it is an (n, d, 1−ε)-
expander, where ε = min{2/d, ρ2/2}.

We prove these two statements of the theorem by the following two lemmas.

41

Lemma 7.7. If G is an (n, d, λ)-expander, then for any S ⊆ V ,

|E(S, S)| ≥ (1− λ)
d|S||S|
n

.

Proof. Define a vector v ∈ Rn where

vi =

{
|S| if i ∈ S
−|S| if i 6∈ S.

Then ||v||2 = |S| · |S|2 + |S| · |S|2 = |S||S|n. Also v ∈ 1⊥.
Let Z =

∑n
i,j=1Aij(vi − vj)2. Only those pairs (i, j) between S and S give a nonzero value for

(vi − vj)2, which is (|S| + |S|)2 = n2. For every edge between S and S, Aij contributes 2/d (it
occurs twice in the sum). So, Z = 2

d |E(S, S)|n2.
On the other hand, if we expand out Z, we get

Z =
∑
i,j

[Aijv
2
i − 2Aijvivj +Aijv

2
j] = 2||v||2 − 2〈Av, v〉.

(We used the fact that the sum of each row and column of A is 1.) Since x ∈ 1⊥, we have
||Av|| ≤ λ||v||, and |〈Av, v〉| ≤ ||Av||||v|| ≤ λ||v||2. So

1

d
|E(S, S)|n2 ≥ (1− λ)||v||2 = (1− λ)|S||S|n.

This proves the lemma.

The quantity 1
2Z = 1

2

∑n
i,j=1Aij(xi − xj)2 = ||x||2 − 〈Ax, x〉 as a quadratic form, is also called

the Laplacian, and can be expressed as 〈x, (I−A)x〉. The matrix I−A is also called the Laplacian.
It plays an important role.

Lemma 7.8. If G is an (n, d, ρ)-(combinatorial-edge)-expander, then its second largest eigenvalue

(without taking absolute value) is at most 1− ρ2

2 .

Proof. Let A be the random walk matrix of G, and let λ′ be the second largest eigenvalue without
taking absolute value. So there is some unit vector u ⊥ 1 such that Au = λ′u. Write u = v + w
where v is the positive part and w is the negative part of u, i.e., vi = ui if ui ≥ 0 and 0 otherwise,
and similarly for wi. Both v and w 6= 0. By exchanging u with −u we may assume at most n/2
entries of v are nonzero. Let Z =

∑
i,j Aij |v2

i − v2
j |.

Claim 1: Z ≥ 2ρ||v||2.
To prove Claim 1: Sort vi so that v1 ≥ v2 ≥ . . . ≥ vn, where vi = 0 for i > n/2. Then

v2
i − v2

j =
∑j−1

k=i(v
2
k − v2

k+1),

Z =
∑
i,j

Aij |v2
i − v2

j | = 2
∑
i<j

Aij

j−1∑
k=i

(v2
k − v2

k+1).

Every term (v2
k − v2

k+1) appears in this sum once (with weight 2/d) for each edge {i, j} such that
i ≤ k < j. Since vk = 0 for k > n/2, we have, by edge expansion,

Z =
2

d

∑
1≤k≤n/2

|E({1, . . . , k}), ({k + 1, . . . , n})|(v2
k − v2

k+1) ≥ 2

d

∑
1≤k≤n/2

ρdk(v2
k − v2

k+1).

42

By telescoping,

Z ≥ 2

d
ρd

∑
1≤k≤n/2

k(v2
k − v2

k+1) = 2ρ
∑

1≤k≤n
(kv2

k − (k − 1)v2
k) = 2ρ

∑
1≤k≤n

v2
k = 2ρ||v||2.

Claim 2: Z ≤
√

8(1− λ′)||v||2.
To prove Claim 2: Since Au = λ′u, and since 〈v, w〉 = 0,

〈Av, v〉+ 〈Aw, v〉 = 〈A(v + w), v〉 = 〈Au, v〉 = λ′〈v + w, v〉 = λ′||v||2.

Since all entries of Aw are all nonpositive, and all entries of v are nonnegative, 〈Aw, v〉 ≤ 0. And
so λ′||v||2 ≥ 〈Av, v〉. Hence

1− λ′ ≥ 1− 〈Av, v〉
||v||2

=
||v||2 − 〈Av, v〉

||v||2
=

∑
i,j Aij(vi − vj)2

2||v||2
,

the last equality is by expanding the sum
∑

i,j Aij(vi − vj)2.

Multiply both the numerator and denominator by
∑

i,j Aij(vi + vj)
2, the numerator is∑

i,j

Aij(vi − vj)2

∑
i,j

Aij(vi + vj)
2

 ≥
∑

i,j

Aij |vi − vj | · |vi + vj |

2

by applying Cauchy-Schwarz to
√
Aij |vi−vj | and

√
Aij |vi+vj |. Hence, using (a+b)(a−b) = a2−b2,

1− λ′ ≥

(∑
i,j Aij |v2

i − v2
j |
)2

2||v||2
∑

i,j Aij(vi + vj)2
=

Z2

2||v||2
(∑

i,j Aijv
2
i + 2

∑
i,j Aijvivj +

∑
i,j Aijv

2
j

) .
Using the fact that the sum of each row and column of A is 1, we get the denominator

2||v||2(2||v||2 + 2〈Av, v〉) ≤ 8||v||4.

Here we used the fact that, for any v, ||Av|| ≤ ||v||, since the maximum eigenvalue of A is 1.
Combining these we have proved Claim 2.

Claim 1 and 2 prove the Lemma 7.8.
The “furthermore” part of the theorem is obtained by adding the self-loops to a (d− 1)-regular

graph with the random walk matrix A. The modified random walk matrix becomes d−1
d A + 1

dI,

which has the same set of eigenvectors as A, and the eigenvalues are d−1
d λi(A) + 1

d . The minimum

eigenvalue (without absolute value) of A is ≥ −1, the new minimum eigenvalue is ≥ −d−1
d + 1

d =
−1 + 2

d . This proves that (after taking absolute value) the second largest eigenvalue λ(G) ≤
1−min{2/d, ρ2/2}. This finishes the proof of Theorem 7.6.

8 Random Walk on an Expander

Theorem 8.1. Let G be an (N, d, λ)-expander, and let B ⊂ [N] be any subset with |B| ≤ βN , for
some β < 1. Let X0, X1, . . . , Xk be random variables denoting a k-step random walk, starting with
a vertex X0 chosen u.a.r. from [N]. Then

Pr

[
k∧
i=0

(Xi ∈ B)

]
≤ (
√
β + λ)k.

43

Note that for small β < 1 and λ < 1, the quantity
√
β + λ is a small constant < 1. With a

little more care we can replace
√
β + λ by (1− λ)

√
β + λ. For β < 1 and 0 ≤ λ < 1, the quantity

(1− λ)
√
β + λ is a weighted average of

√
β (< 1) and 1, and hence (1− λ)

√
β + λ < 1.

Proof. For 0 ≤ i ≤ k, let Bi be the event [Xi ∈ B]. Then

Pr

[
k∧
i=0

(Xi ∈ B)

]
= Pr[B0] · Pr[B1|B0] · Pr[B2|B0 ∧B1] · · ·Pr[Bk|

∧
0≤i≤k−1

(Xi ∈ B)].

Let M = MB be the projection matrix on B, namely, Mij = 1 for all i = j ∈ B, and 0 otherwise.
We make two simple Observations:

1. For any probability distribution p ∈ RN≥0, Mp records the probability on each i ∈ B, and
Mp
||Mp||1 is the conditional probability distribution under the condition that it is in B, since

||Mp||1 is the probability to be in B.
2. In particular, if we start with p and take one step in the random walk, and denote the location

after this step by the random variable Y , then the conditional probability distribution of Y
under the condition that Y ∈ B is given by MAp

||MAp||1 .

Thus, Observation 1 and 2 are to change p to the || · ||1-normalized versions of Mp and MAp
respectively for the resulting distributions. Note that the formulas above are invariant if we replaced
the vector p by a positive scalar multiple cp, for any c > 0.

Now we prove the following inductively for i ≥ 1:

The conditional probability

Pr[Bi|B0 ∧ . . . ∧Bi−1] =
||(MA)iM1||1
||(MA)i−1M1||1

,

and the conditional distribution of Xi, under the condition
∧

0≤j≤iBj , is

(MA)iM1

||(MA)iM1||1
.

To prove this inductively, we observe that the distribution of X0 is 1, and the conditional
distribution of X0 under the condition B0 is M1

||M1||1 (by Observation 1), which is a positive scalar

multiple of M1. The distribution of X1 (conditioned on B0) is

AM1

||M1||1
.

Then Pr[B1|B0] = ||MAM1||1
||M1||1 . By Observation 2, the conditional distribution of X1 conditioned on

B1 (and on B0) is the || · ||1-normalized MA(M1), which is MAM1
||MAM1||1 .

For general i > 1, start with the distribution of Xi (conditioned on B0 ∧ . . . ∧ Bi) which is a
positive multiple of (MA)iM1, by Observation 2, the conditional distribution of Xi+1 under the
additional condition Bi+1 (as well as B0 ∧ . . . ∧Bi) is

(MA)i+1M1

||(MA)i+1M1||1
.

44

The conditional distribution of Xi+1 under the condition B0 ∧ . . . ∧Bi is

A(MA)iM1

||(MA)iM1||1
.

Then, the probability of Bi+1 under the condition B0 ∧ . . . ∧Bi is

Pr[Bi+1|B0 ∧ . . . ∧Bi] =
||(MA)i+1M1||1
||(MA)iM1||1

,

completing the induction.
Hence,

Pr

[
k∧
i=0

(Xi ∈ B)

]
= Pr[B0] · Pr[B1|B0] · Pr[B2|B0 ∧B1] · · ·Pr[Bk|

∧
0≤i≤k−1

(Xi ∈ B)]

= ||M1||1 ·
||(MA)M1||1
||M1||1

· · · ||(MA)iM1||1
||(MA)i−1M1||1

· · · ||(MA)kM1||1
||(MA)k−1M1||1

= ||(MA)kM1||1

By Cauchy-Schwarz we have

||(MA)kM1||1 ≤ ||(MA)kM1||
√
N (This latter norm is the 2-norm.).

Hence,
||(MA)kM1||1 ≤ ||MA||k · ||M || · ||1|| ·

√
N = ||MA||k · ||M ||,

as ||1|| = 1√
N

.

For any x ∈ RN , Mx just truncates x to its |B| entries in B, thus clearly ||Mx|| ≤ ||x||, and so
||M || ≤ 1.

The purpose of transferring the estimate from 1-norm to 2-norm is to use the orthogonal spectral
decomposition. Let v1 = 1√

N
(1, 1, . . . , 1)T, v2, . . . , vN be a set of orthonormal eigenvectors of A, with

eigenvalues λ1 = 1, λ1, . . . , λN where except λ1 = 1, all other |λi| ≤ λ(G). Take any x ∈ RN . Then
x =

∑N
i=1 αivi, where αi = 〈x, vi〉, and they satisfy

∑N
i=1 α

2
i = ||x||2.

MAx = MAα1v1 +M

N∑
i=2

αiAvi = α1Mv1 +M

N∑
i=2

αiλivi.

Note that ||Mv1||2 = |B|
N ≤ β. Also |α1| ≤ ||x||. For the second part, the components αiλivi are

mutually orthogonal, thus∣∣∣∣∣
∣∣∣∣∣
N∑
i=2

αiλivi

∣∣∣∣∣
∣∣∣∣∣
2

=

N∑
i=2

|αi|2|λi|2 ≤ λ(G)2
N∑
i=2

|αi|2 ≤ λ(G)2
N∑
i=1

|αi|2 = λ(G)2||x||2.

So
||MAx|| ≤ (β + λ(G)) · ||x||.

This proves the theorem.

45

If L ∈ RP where we can test membership w ∈ L by using a random string s ∈ {0, 1}n, with
error probability ≤ 1/2. If we repeat this probabilistic process by running k independent runs,
using a total of kn random bits, we can achieve error probability ≤ 1/2k. Instead of running on
k independent batches of n random bits each, we can use n bits to select a point in {0, 1}n, and
then impose an expander structure on V = {0, 1}n, with constant degree, and λ < 1. Then, to take
successive probabilistic tests for membership w ∈ L we take a random walk on the expander. Each
point is a potential “random” test string s′ ∈ V = {0, 1}n, and each successive step only takes O(1)
bits. Thus we use a total of n+O(k) bits. Theorem 8.1 says that this expander walk achieves error
probability ≤ 2−Θ(k). Thus we can achieve error probability ≤ 1/2k using only O(n+ k) bits.

9 Explicit Construction of Expanders

We take two graphs G and H, where G is an (n, d, λ)-expander and H is an (n′, d′, λ′)-expander.
Let A and B be their random walk matrices respectively. If we form the product BA, then this
represents a directed graph of out-degree dd′. Each edge corresponds to taking a step in G followed
by a step in H. To make it undirected (symmetric), we can take BAB or ABA. It can be easily
verified that λ(ABA) ≤ λ(A)λ(B)λ(A), because they share an eigenvector 1, and 1⊥ are invariant
under both A and B.
Exercise: Prove that λ(ABA) ≤ λ(A)λ(B)λ(A).

A more interesting product is the tensor product ⊗. To make it even more useful (in low
level complexity setting, such as logspace computation) we define a rotation map for a graph G as
follows: We consider at each vertex v ∈ [n], its incident edges are labeled by [d], and the rotation
map

RotG : [n]× [d]→ [n]× [d]

gives the neighboring information more explicitly, including the local labeling of the edges:

RotG(v, i) = (u, j),

where the ith edge of G at v leads to the vertex u, and that edge is labeled as the jth edge at u.
Thus in the reverse direction, RotG(u, j) = (v, i).

Now the tensor product graph G⊗H is defined as follows: The vertex set is [n]× [n′]. Its edges
are labeled by [d]× [d′], and

RotG⊗H((v, v′), (i, i′)) = ((u, u′), (j, j′)),

where RotG(v, i) = (u, j) and RotG(v′, i′) = (u′, j′).
In terms of random walk matrices, the random walk matrix of G⊗H is just the tensor product

of the random walk matrices A and B.
a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

an1B an2B . . . annB


Lemma 9.1.

λ(G⊗H) ≤ max{λ(G), λ(H)}.

46

Exercise: Prove that λ(ABA) ≤ λ(A)λ(B)λ(A).

Now we come to the third product: Replacement product r©.
Suppose G is a D-regular graph on n vertices. Let H be a d-regular graph on D vertices.

We will replace each vertex v of G by a copy Hv of H. Each vertex of Hv will be placed in 1-1
correspondence with each edge at v. Within each copy Hv the edges are as they exist in H. Between
different copies of Hv, we connect them using the name of the vertex of Hv in the rotation map of
G. We weight these edges by a multiplicity of d so that a random step of the the random walk in
G r©H has probability 1/2 to stay within the copy Hv or to go to another copy Hu. Formally,

1. For every vertex v ∈ G, the graph G r©H has a copy Hv of H (including both edges and
vertices. Thus V (G r©H) = [n]× [D].

2. If RotG(v, i) = (u, j), where u, v ∈ [n] and i, j ∈ [D], then we place d parallel edges between
(v, i) and (u, j).

The graph G r©H has nD vertices and is 2d-regular (d edges within Hv and d edges going to
another copy Hu).

In terms of the rotation map for G r©H, for all (v, i) ∈ V (G r©H) = [n] × [D] and for all
(σ, b) ∈ [d]× {0, 1} (edge labels),

RotG r©H((v, i), (σ, b)) =

{
((v, j), (τ, 0)) if b = 0, and RotH(i, σ) = (j, τ)
((u, j), (σ, 1)) if b = 1, and RotG(v, i) = (u, j).

Note that the first line (for b = 0) is for the move inside Hv. In this case, only RotH is involved,
but not RotG. The second line (for b = 1) is for the move between copies of H. In this case, only
RotG is involved, but not RotH , and there are d parallel edges corresponding to the multiplicity
for all σ ∈ [d].

We can define a permutation matrix P ∈ RnD×nD, indexed by {(v, i) ∈ [n]× [D]}. The column
indexed by (v, i) has a single 1 at (u, j) if RotG(v, i) = (u, j), and 0 elsewhere. Note that by the
definition of the rotation map, this matrix P is symmetric (thus an involution: P = P T = P−1).
Then the random walk matrix of G r©H is

A r©B =
1

2
P +

1

2
(In ⊗B).

Note that P (e
(n)
v ⊗ e(D)

i) = e
(n)
u ⊗ e(D)

j , where RotG(v, i) = (u, j), and e
(n)
v and e

(D)
i denote the

unit vectors in the respective dimensions.

Lemma 9.2. If λ(G) ≤ 1− ε, and λ(H) ≤ 1− δ, then

λ(G r©H) ≤ 1− εδ2

24
.

Thus while the ordinary product improves the spectral gap (at the cost of increasing degrees),
the replacement product reduces degrees with not too much of a loss of the spectral gap. If we
imagine G is a D-regular graph on n vertices with a good expansion, but D is too large (perhaps
because we obtained G by ordinary product), using the replacement product can reduce the degree
and not reducing the expansion too badly. This process can then be repeated. (You should
connect this idea with the idea of taking random walks on {0, 1}n as witnesses for an RP language
membership test.)

47

Proof. We prove that λ((G r©H)3) ≤ 1− εδ2

8 . This is sufficient, because (1−x)3 = 1−3x+x2(3−x) ≥
1− 3x, for 0 ≤ x ≤ 3, (we take x = εδ2

8), and λ((G r©H)3) = [λ(G r©H)]3.
The random walk matrix of (G r©H)3 is

W =

(
1

2
P +

1

2
(In ⊗B)

)3

.

Claim: We can write B = (1− δ)B′+ δJD, where B′ has 2-norm ||B′|| ≤ 1, and JD is 1
D times the

D ×D all 1’s matrix.
We will prove this Claim later. For now assume this Claim, then we can substitute B by this

expression and get

W =

(
1

2
P +

1− δ
2

(In ⊗B′) +
δ

2
(In ⊗ JD)

)3

.

We expand the product and get a horrible looking sum of 27 terms. Other than the term

δ2

8
(In ⊗ JD) · P · (In ⊗ JD),

we get 26 terms and each product is a matrix with norm (2-norm) at most 1, with some weight,

and the combined coefficient weight sums to (1− δ2

8). Thus we have the expression

W = (1− δ2

8
)W ′ +

δ2

8
(In ⊗ JD) · P · (In ⊗ JD).

(Note that we are not claiming that for matrices M and M ′ each of norm ≤ 1, we get to “take out
the coefficient” cM+c′M ′ directly, (for c, c′ > 0). But, instead, we simply letM ′′ = 1

c+c′ (cM+c′M ′),

and then cM + c′M ′ = (c+ c′)M ′′, and ||M ′′|| ≤ 1
c+c′ (c||M ||+ c′||M ||) ≤ 1.)

Now we verify that

• (In ⊗ JD) · P · (In ⊗ JD) = A⊗ JD.

Take ev = e
(n)
v and fi = e

(D)
i . Consider a basis vector ev ⊗ fi. First

(In ⊗ JD)(ev ⊗ fi) = ev ⊗
1

D
(1, 1, . . . , 1)T =

1

D

D∑
k=1

ev ⊗ fk.

Then

P

(
1

D

D∑
k=1

ev ⊗ fk

)
=

1

D

∑
1≤k≤D,RotG(v,k)=(u,j)

eu ⊗ fj .

Finally,

(In ⊗ JD)

 1

D

∑
1≤k≤D,RotG(v,k)=(u,j)

eu ⊗ fj

 =
1

D

∑
1≤k≤D,RotG(v,k)=(u,j)

eu ⊗ (
1

D
(1, 1, . . . , 1)T)

=

 1

D

∑
1≤k≤D,RotG(v,k)=(u,j)

eu

⊗ (
1

D
(1, 1, . . . , 1)T).

48

This is exactly (A⊗ JD)(ev ⊗ fi).

Comment: All this algebra perhaps obscures the underlying simple reasoning. What we did is to
separate out the component of W into the part along (A⊗ JD) with a non-trivial weight δ2

8 , from

the rest, expressed as a “noise” with weight 1− δ2

8 . The “noise” part is some norm 1 matrix. But
the matrix (A ⊗ JD) represents a random step along A (on G, which has a non-trivial diffusion
with parameter ε), coupled with a “totally” random step represented by JD on H. All this algebra
is to spell out this reasoning.

As W and A⊗ JD are both symmetric, so is W ′ (you don’t need to multiply out W to see this
for W ′) and they both preserve the eigenspace 1 ∈ RnD and 1⊥. Hence

λ(W) ≤ (1− δ2

8
)λ(W ′) +

δ2

8
λ(A⊗ JD).

Since λ(W ′) ≤ ||W ′|| ≤ 1, and λ(JD) = 0, we have λ(A⊗ JD) = λ(A) ≤ 1− ε, we have

λ(W) ≤ (1− δ2

8
) +

δ2

8
(1− ε) = 1− εδ2

8
.

Now we finish the proof by taking care of that Claim.
We prove that every random walk matrix B ∈ RD×D with a spectral gap δ = 1 − λ can be

written as λM + (1 − λ)JD, for some M with ||M || ≤ 1. First if B is linearly dependent with
JD, then by the row sum being 1, we have B = JD, and we are done with M = 0. So suppose B
and JD are linearly independent. Then we claim λ 6= 0. Otherwise B has eigenvalues 1, 0, . . . , 0,
with orthonormal eigenvectors v1 =

√
D1 = 1√

D
(1, 1, . . . , 1)T, and v2, . . . , vD. Then by the spectral

decomposition

B = (v1, v2, . . . , vD)


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



vT1
vT2
...
vTD

 = v1v
T
1 = JD.

So we have λ 6= 0.
Now we let M = 1

λ(B − (1 − λ)JD). We prove that ||M || ≤ 1. Let x be any unit vector.
Decompose x along 1 and 1⊥, we write x = y+z, and ||x||2 = ||y||2+||z||2. Bx = By+Bz = y+Bz,
an since z ∈ 1⊥, ||Bz|| ≤ λ||z||. Then

Mx =
y +Bz − (1− λ)JDz

λ
=
y +Bz − (1− λ)y

λ
= y +

Bz

λ
,

because JDx = JDy + JDz = y + 0. Hence

〈x,Mx〉 = 〈x, y〉+
1

λ
〈x,Bz〉 = ||y||2 +

1

λ
〈x,Bz〉,

and so |〈x,Mx〉| ≤ ||y||2 + ||z||2 = ||x||2 = 1, we conclude that ||M || ≤ 1. This proves the Claim.

Exercise: Use this Claim to improve the the constant
√
β + λ in Theorem 8.1 to (1− λ)

√
β + λ,

which is a wighted sum of
√
β and 1, thus also < 1.

A Construction

49

Theorem 9.3. One can explicitly construct a (n, d, λ)-expander family of d-regular graphs, for
some constants d and λ < 1.

Proof. The basic idea is simple: we will iterate

G′ ← (G⊗G)const r©H.

The tensor product is to increase the size rapidly, the powering to a constant is to shrink the λ
(thus to increase the gap 1−λ) but at the cost of increasing degrees, and r© is to reduce the degree.

Now the details. Start with a ((2d)c, 2d, 1/2)-expander G1, and an ((2d)2c, 2d, 1/2)-expander
G2 for some constants c, d. Such expanders can be found by an exhaustive search, and the ex-
istence is guaranteed by the probabilistic proof. We can take c = 100, say. Also we can find an
((2d)c, 2d, 0.01)-expander H, for a sufficiently large d, again by an exhaustive search. Let D = (2d)c.
Then G1, G2, and H have D, D2, and D vertices, respectively.

For k > 2, define

Gk =
(
Gb k−1

2
c ⊗Gd k−1

2
e

)50
r©H.

Claim: Gk is a (Dk, 2d, 49/50)-expander.
This is an easy induction. The base cases k = 1, 2 are clear. If inductively G` has n` = D`

vertices for ` < k, then Gb k−1
2
c ⊗ Gd k−1

2
e has Dk−1 vertices, and so Gk has Dk vertices. If G is

2d-regular, then G⊗G is (2d)2-regular, and (G⊗G)50 is D-regular, and therefore (G⊗G)50 r©H
makes sense, and is back to 2d-regular.

Finally, by Lemma 9.2,

λ(Gk) ≤ 1−
1
2(0.99)2

24
≤ 49

50
.

10 Reingold’s Theorem

Using these ideas Reingold proved that Connectivity problem for undirected graphs can be decided
in deterministic logspace. Thus, not only a random walk (which takes randomized logspace) can
solve this problem, it can also be done deterministically.

Theorem 10.1. Connectivity for undirected graph is in deterministic logspace.

Suppose we are given a pair of vertices s and t in an undirected graph G. The task is to decide
whether there is a path (of length ≤ n− 1) rom s to t. (This is called the s-t connectivity problem.
One can cycle through all t in deterministic logspace to decide connectivity for the whole graph.
Thus the s-t connectivity problem is logspace equivalent to the connectivity problem.)

Suppose G is an expander, then for any pair of connected vertices s and t, there is a path
of length O(log n) that connects them. This is because, if we consider the set B`(s) of reachable
vertices from s by paths of length ≤ `, then as along is |B`(s)| ≤ n/2, the size keeps expanding
by a constant factor 1 + ε. Thus within O(log n) steps we reach |B`(s)| > n/2. Similarly the set
|B`(t)| also reach n/2 for ` within O(log n), and so they have a nonempty intersection. Thus there
is a path of the O(log n) connecting s and t.

50

The main idea of Reingold’s proof is to replace G by a sequence of operations so that we end
up with a new graph G′ what is only polynomially larger, but every connected component of G has
become an expander.

For preprocessing, we can replace each vertex v of G by a cycle of length deg(v). We add
self-loops at every vertex so that it is d50-regular, where d is a constant to be chosen shortly. The
connected components of G remain connected components.

For every connected component of G there is already a spectral gap of 1 − 1/poly(n). Let
G0 = G. For k ≥ 1, let Gk = (Gk−1 r©H)50, where H is a (d50, d/2, 0.01)-expander. Note that if
Gk−1 is d50-regular, then Gk−1 r©H is d-regular again, and so Gk is d50-regular.
Claim: For k = O(log n), every connected component of Gk is an (d50kn, d50, λ)-expander, where
λ ≤ 19/20.

By Lemma 9.2, if λ(Gk−1) ≤ 1− ε, then λ(Gk−1 r©H) ≤ 1− (0.99)2ε
24 < 1− ε

25 . The initial ε for
G0 is Θ(1/n2). Hence

λ(Gk) ≤
(

1− ε

25

)50
< e−2ε ≈ 1− 2ε.‡

Thus if we take k = O(log n), then Gk has size nO(1), and λ(Gk) ≤ 19/20.
So the s-t-connectivity algorithm is to run recursively using a stack of O(log n) levels, a walk

of O(log n) steps. An logspace algorithm does not have space to write down all the intermediate
graphs. Instead it recursively constructs the necessary neighborhood edge relationships “on the
fly” as needed, all in logspace.

11 Coupling and Path Coupling

I will use the excellent notes by Mark Jerrum, found at
http://www.maths.qmul.ac.uk/~mj/ETHbook/chapter4.pdf

12 Interactive Proofs

If time permit, I will further discuss:

1. Interactive Proof System for graph non-isomorphism.
2. Permanent has Interactive Proof Systems.
3. IP = PSPACE by commutative diagrams.

13 Graph Isomorphism

Permutation groups and its application to graph isomorphism.

‡(1− 1/x)x < e−1, when x→∞, as x loge(1− 1/x) = −
[
1 + 1

2x
+ 1

3x2 + . . .
]
< −1.

51

http://www.maths.qmul.ac.uk/~mj/ETHbook/chapter4.pdf

	Some Efficient Algorithms
	Integer Multiplication
	Matrix Multiplication
	Fast Fourier Transform

	Some Theorems on Matchings and Coverings
	König's Theorem
	König-Egerváry Theorem
	Hall's Theorem
	Hall's Theorem implies König's Theorem
	The Hungarian Algorithm

	Randomization in Algorithms
	Basic Probability
	Markov's Inequality
	Chebyshev Inequality
	Chernoff Bound
	Universal Hashing

	A Randomized Algorithm for MAXCUT
	Deterministic MAXCUT Approximation Algorithm
	Randomized MAXCUT Approximation Algorithm
	Derandomizing MAXCUT Approximation Algorithm Using Universal Hash Functions
	Goemans-Williamson Algorithm

	Randomized Complexity Classes
	Amplification of BPP
	Sipser-Lautemann Theorem: BPP PH
	Isolation Lemma
	 BPP2p - Another Proof Using the Isolation Lemma
	Approximate Counting Using Isolation Lemma

	Unique Satisfiability: Valiant–Vazirani Theorem

	Random Walks
	Random Commute

	Expanders
	Algebraic and Combinatorial Notions of Expanders

	Random Walk on an Expander
	Explicit Constriction of Expanders
	Reingold's Theorem
	Coupling and Path Coupling
	Interactive Proofs
	Graph Isomorphism

